

Computer Science Students CAN write:
A year-long writing project

by Melody Lam, 2019 CTI Fellow
William Amos Hough High School

This curriculum unit is recommended for Computer Science courses, 9-12

Keywords: computer science, mathematics, writing

Teaching Standards: See Appendix 1 for teaching standards addressed in this unit.

Synopsis: It is a common myth that computer programmers lack communication skills.
This curriculum unit is designed to "bust the myth" by allowing students to develop crucial
communication skills through a student-led project. Students will propose a project that
piques their interest, write a project proposal, and seek feedback from their peers and other
members of their community. Finally, as a culminating assignment, students will present
their progress and work on their project though a short presentation and short, 750 word
paper.

I plan to teach this unit during the coming year to grade 9-12

I give permission for Charlotte Teachers Institute to publish my curriculum unit in print and
online. I understand that I will be credited as the author of my work.

Computer Science Students CAN write:
A year-long writing project

by Melody Lam

Introduction

Rationale

The purpose of the unit is to allow students who take a computer science course the
opportunity to create a project that reflects their own interests as well as for them to practice an
often overlooked soft skill: communication. With the growing interest in computer science in
both education and in today's industry, more students are taking computer science courses.
However, there is a marked lack of various communication opportunities, especially in the
written form, in these computer science courses. Oftentimes there is a reluctance to introduce
writing prompts or opportunities for writing because it is simply not needed, or it would detract
from the time for acquiring concepts that are relevant to the subject at hand.

CTE courses are designed "to help equip students with the 21st century skills needed for

a global economy"1. Looking at the NC CTE objectives for computer programming courses and
the AP Course and Exam Descriptions (CED), besides one particular class (AP Computer
Science Principles), there is at most minimal focus on communication skills. In fact, the NC
standards for the computer programming courses do not mention communication at all.2 In AP
Computer Science Principles, one of the "Big Ideas" that drive the course is "Communication",
and there are numerous opportunities for students to communicate, from pair programming
paradigms to creating a computer program and discussing the program through a short 750 word
technical paper to be submitted to CollegeBoard as part of the exam. In Python Programming 1,
replacing Computer Programming 1 from the 2019-2020 year, communication is relegated to the
objective of commenting the user code so that other programmers can understand the purpose
and aims of the code. In AP Computer Science A, a "Computational Thinking Practice" is
"Documentation" but is relegated to describing the function of computer code and why it would
not work, using technical vocabulary.3 In any case, there is not a standard objective of being able
to communicate effectively across the three computer science courses. As AP Computer Science
Principles is mainly a freshman-level class, students will have practiced the soft-skill of
communication but do not have the opportunity to reinforce the skill throughout the 3 courses.

1 “Charlotte Mecklenburg Schools Career & Technical Education.”
2 “NORTH CAROLINA CAREER AND TECHNICAL EDUCATION STANDARDS - Business, Finance, and
Information Technology Education - Computer Programming 1.”
3 “AP® Computer Science A.”

Demographics

William Amos Hough High School is a large suburban high school of over 2500 students
located in the small town of Cornelius, North Carolina just north of Charlotte. We opened our
doors in 2010 to serve the northern part of the Charlotte-Mecklenburg School District. Eighty-
four percent of our graduates go on to either two- or four-year colleges while 16% join the
military. Twenty-six percent of our students are minorities and 18% are free or reduced lunch
students. We offer a comprehensive college preparatory program in the arts and sciences. Classes
are taught at the Standard and Honors levels and we offer 26 Advanced Placement courses in
conjunction with the College Board. Hough also offers a variety of CTE classes, from
engineering to marketing to computer science. Students that are interested in computer science
take classes in the Software Development pathway. We offer 3 choices this year: AP Computer
Science Principles, AP Computer Science A, and Python Programming 1. (Hough did not offer
Microsoft Software Development Fundamentals due to a lack of enrollment.)

I am currently teaching all 3 computer science courses this year. Hough started offering

AP Computer Science Principles in the 2017-2018 year and AP Computer Science A in the
2018-2019 year. The previous course in the pathway, Computer Programming 1, had already
been offered and has been replaced with Python Programming 1 starting this year. AP Computer
Science Principles classes average 30 students, Python Programming 1 classes average 15
students, and AP Computer Science A average 12 students during the 2019-2020 school year.
The majority of students that take these courses are male. There is a sizable amount of students
for which the AP Computer Science Principles class is their first AP, and about half of the
students in AP Computer Science Principles are freshmen. AP Computer Science A is only
offered at the sophomore-senior level. While there is a defined sequence in the Software
Development pathway, students can take courses off-sequence.

In Principles, the language of choice is Snap!, a teaching language that utilizes blocks to

arrange a program. Along with basic programming and computational thinking skills, the course
covers the workings of the Internet as well as global impacts of computing. Python Programming
1 and AP Computer Science A are more traditional CS courses, where the focus is on developing
proficiency in a programming language. In Python Programming, the language is Python, a
simple language predominantly oriented towards data science applications. In AP Computer
Science A, the language is Java, an object oriented language that is widely used in CS 101
courses around the nation as well as in the industry in embedded applications such as ATM
machines and Point-Of-Sale machines.

Unit Goals

The general goals of the unit are as follows:
● Develop the soft skill of communication through the written and verbal forms.
● Develop student self-reliance and sufficiency through a student-directed project
● Create an artifact (computer program and written description of the program) that

can be used in a portfolio for resume building and/or a graduation project (if the
school has a graduation project).

The unit aims to satisfy the AP Computer Science Principles Big Idea of communication

by allowing students to develop a year-long project of their own: Students communicate through
a final presentation, writing formal reports, and collaborating with others on their project. As
there are no explicit standards in either AP Computer Science A or Python Programming
concerning communication, I will refer to the Computer Science Curricula 2013 learning
outcomes in the Professional Communication area.4 While the document is oriented towards
undergraduate programs in computer science, the learning objectives are appropriate for students
in K-12 with support in place from the teacher.

This unit is designed for high schools; however, with modifications, this project can be

done at the middle school and elementary school levels.

4 ACM Computing Curricula Task Force, Computer Science Curricula 2013.

Content Research

A pervasive myth in Computer Science education, especially when preparing students for

the workforce, is that Computer Science is simply just programming computers to perform a
task. The focus is getting students proficient in programming tools and techniques. However,
when looking at what the tech industry expects out of new hires (besides programming skills),
they frequently list communication as a skill. 5 In fact, most recent graduates from a Computer
Science or Software Engineering program are notoriously weak in this area.6 However, it seems
like progress is being made to improve a graduate's communication-related soft skills. For
example, universities such as Eastern Washington University are introducing courses in technical
writing for students in the computer science major.7

In the postsecondary area, most faculty do not focus on communication (or other soft

skills) because of the lack of time or a fear that teaching communication skills may reduce time
spent on essential technical content.8 Not only that, by adding a communication/writing
component to a course, instructors may find that it adds more work to grading and assessment of
students.9 This is in contrast to the ISTE/ACM standards for computing courses at the
undergraduate level, which emphasise at least 1 hour (if not more) of "social issues" and
"professionalism" content in an undergraduate course. 10,11 While there are articles from
professors and CS faculty at the postsecondary level detailing their efforts to incorporate
technical writing into a CS major track12, there is little research or study done with writing in the
CS curriculum at the secondary (high school) level. Most journal articles are simply detailing the
implementation of writing into a CS course with some small commentary on the effects on the
students, but do not have a long-term followup.13 For example, at the University of Scranton,
Professors Jackowitz, Plishka, and Sidbury introduced a writing component in the form of
reading an article and testing over the article, as well as requiring the students to write a
specification sheet on their assignments.Later on, the students have a senior project to turn in
with an extensive writing component. At the conclusion of the study, the researchers determined

5 “10 Skills You Didn’t Know Could Land You an IT Job.”
6 Anderson et al., “CS/SE Instructors Can Improve Student Writing without Reducing Class Time Devoted
to Technical Content.”
7 Kaufman, “Technical Writing and Computer Programming.”
8 Anderson et al., “CS/SE Instructors Can Improve Student Writing without Reducing Class Time Devoted
to Technical Content.”
9 Anewalt, “EXPERIENCES TEACHING WRITING IN A COMPUTER SCIENCE COURSE FOR THE
FIRST TIME.”
10 Tucker, “Computing Curricula 1991.”
11 ACM Computing Curricula Task Force, Computer Science Curricula 2013.
12 Jackowitz, Plishka, and Sidbury, “Teaching Writing and Research Skills in the Computer Science
Curriculum.”
13 Jackowitz, Plishka, and Sidbury.

that introducing writing assignments early has a long-term benefit to students. However; it
causes additional strain by students and by the instructors of the course.14

At other colleges, such as Seton Hill University, writing is incorporated into a CS course

in the form of a writing intensive course, where students design and write a programming
language of their own.15 Tircuit, in his paper, details the process of adapting a writing intensive
program for an existing course. Unlike in the Scranton example, his course focuses less on the
research aspect (simply asking for sufficient research to make the argument) and more on writing
for industry professionals. In Tircuit's case, most students go on to the industry rather than
pursuing a graduate level degree. The process of writing the paper is very much aligned with an
English class's writing process, where students prewrite, draft, and then submit the paper. One of
the things that Tircuit details is objectives of the assignment, which are to "learn to write well
enough to write a proposal at your future place of employment" and "[express] your ideas clearly
and with strong rationale for your language choices".16 While Tircuit was pleasantly surprised by
some of the students going above and beyond. He also shared some reservations with peer
review, citing "bad experiences". As a result he focuses on peer collaboration such as discussing
anonymized responses with the whole group. I believe that for a high school student, peer
collaboration is more viable as they can see many examples of good and bad papers.

On a national level, the Computer Science Teacher Association has listed various

objectives to promote writing in computer science classes at all levels in their K-12 Computer
Science Standards.17 For example, in the K-2 level, we see that students are expected to develop
a plan for a program through various mediums such as storyboards or graphic organizers. At the
HS level, students are expected to "document design decisions using text, graphics,
presentations, and/or demonstrations in the development of complex programs." However, it
seems like while there are these standards, courses at the state level are slow to adopt them.
Looking at the NC CTE objectives for computer programming courses and the AP Course and
Exam Descriptions (CED), besides one particular class (AP Computer Science Principles), there
is at most minimal focus on communication skills. In fact, the NC standards for the computer
programming courses do not mention communication at all.18 Considering that communication is
an essential soft skill that industry expects from their programmers, it seems remiss that it is not
included in the standards of the curriculum. However, considering the approximately 90 days
(block schedule) allotted for teaching courses in North Carolina, it seems that the focus is on
acquiring technical and content skills versus developing soft skills in communication and
writing. However, Linda Pesante at Carnegie Mellon warns that "isolated attempts to teach

14 Jackowitz, Plishka, and Sidbury.
15 Tircuit, “Teaching Writing in Computer Science.”
16 Tircuit.
17 “CSTA Computer Science Standards Revised 2017.Pdf.”
18 “NORTH CAROLINA CAREER AND TECHNICAL EDUCATION STANDARDS - Business, Finance,
and Information Technology Education - Computer Programming 1.”

writing hinder the transfer of learning to other courses..and to the workplace."19 Therefore, the
unit aims to be a general framework for writing in computer science so that it can be applied
across all computer science courses and that teachers may choose to utilize this across the years
amongst common students.

 In the Writing in the Mathematics seminar, we started by describing what mathematical

writing really is. The focus is to have students write about mathematics for the purposes of
reasoning and communication. For this unit, I decided to focus on Exploratory, Informative, and
Mathematically Creative writing for the students. The Exploratory portion would be the
specification sheet or "spec sheet", where the students describe the project they would like to
embark on. The Informative portion would come during the formal reporting, and the
mathematically creative portions would come through the project itself. 20 While the seminar is
oriented towards elementary school writing, because computer science is taught at a relatively
basic level in the K-12 education sphere, a lot of the elementary school writing techniques can be
applied to computer science.

Pesante details some ways to approach the writing situation in a computer science class.

In essence, according to Pesante, writing and software development (programming) are rather the
same. 21A lot of the postsecondary courses that do utilize writing also argue that writing and
programming are much the same as well. Therefore, computer science teachers can relate the
writing process by explaining to students that the process is much like the programming process.
22 In addition, students need to identify the reader (the teacher, acting as if they did not know
what the student was doing) and the writer (themselves) and see that the communication is
effective if both parties are on the same page. 23 Therefore, in my curriculum unit, I identify the
teacher as a "boss" or a "project manager" in a software development company, who may not
know (or want) the exact technical details of the project and relies on the software developer (the
student) for expository information on the project.

Dugan also gives some advice in his paper about writing in computer science courses.

Dugan's courses were co-taught with a writing professor. In his paper, he splits the writing into 3
general categories: learning, academic communication, and industrial communication. In the
case of this curriculum unit, we are focusing on industrial communication, in what Dugan calls
"team" and "project management" categories.24 I focus on industrial communication because
students can utilize these communication skills in not only the coursework but also in the

19 Pesante, “Integrating Writing into Computer Science Courses.”
20 Colonnese, “Instructional Guidelines for Elementary Mathematical Writing.”
21 Pesante, “Integrating Writing into Computer Science Courses.”
22 Pesante.
23 Pesante.
24 Dugan and Polanski, “WRITING FOR COMPUTER SCIENCE: A TAXONOMY OF WRITING TASKS
AND GENERAL ADVICE.”

workforce. While there may be some research and peer evaluation segments in this curriculum,
the main writing portions would fit the former categories. He also gives some advice on teaching
structure and grammar "as needed"; K-12 teachers may feel uncomfortable with this. However, I
feel that some structure can be taught to the students; for example, giving students sentence
stems to guide how they should write certain sections, or possibly referring them to an English
teacher for more assistance. While co-teaching is definitely an option, because of the varying
skill levels and ages of the students in an elective class this may be almost (or completely)
impossible to accomplish.

In addition, the curriculum unit utilizes a similar format to the CTI seminars. In our

seminars, we discuss the subject of the seminar (for example, Writing in Mathematics) in 2 hour
sessions with a seminar leader (a professor at UNCC or at Johnson C. Smith) and seminar
members. The culminating project is a curriculum unit that unites the ideas presented in the
seminar to the coursework at hand. During the writing of the curriculum project, seminar
members write 2 drafts and get feedback from the seminar leader on the curriculum. Students in
the curriculum unit will get feedback at regular intervals concerning the writing and progress of
their project. Without guidance and feedback, students may be unfocused in their writing and fail
to communicate effectively. Also, in Computer Science Students CAN Write (CSSCW), there is a
focus on efficient communication versus correct grammar and sentence structure. While there is
an expectation that students use the tools at hand (such as Google Docs, Grammerly, etc) to be as
correct as possible with their spelling and grammar, we value seeing the students think about the
process of the project and their critical thinking over English proficiency skills. Anewalt in her
paper suggests something similar to the conferences between seminar leader and teachers where
instead of grading a draft, there is a "cold conference" where students talk to the instructor in
appointments where there is a discussion of the paper in a limited time frame.25 However, unlike
in a university/college setting there are not on-campus resources for writing help besides the
English teachers. I feel that a good working relationship with the English teachers on campus
will help to address the necessary writing support and mitigate students' differing English skills
somewhat.

25 Anewalt, “EXPERIENCES TEACHING WRITING IN A COMPUTER SCIENCE COURSE FOR THE
FIRST TIME.”

General Teaching Methods

To implement this curriculum, an important aspect is an environment that fosters
collaboration amongst students and the teacher. Along with this, there needs to be time set aside
for students to work on their projects and written portions.

This project has several components, some of which will be looped/repeated. The
components are as follows:

● Component 1: Student project/proposals
● Component 2: Progress Checks
● Component 3: Developing the product/project
● Component 4: Presenting the finished product/project.
● Component 5: Reflection Piece

Component 1: Student project and proposals

In Component 1, students develop a potential project to pursue. This should be done after
the first few weeks of the course. This gives time for the students to develop basic skills in
programming, get acquainted with the course material and how it will be taught in the class, and
get acquainted with the teacher and the students in the course. For the teacher, this allows them
to get acquainted with the students and previous knowledge/skill sets that students may come
into the course with.

The students should attempt to independently develop an idea, but if students are having
difficulty developing an idea to work on, have a class parking lot or idea board where students
can list ideas that they would like to pursue. The ideas need not be unique; in fact, students will
probably propose an idea that has already been done. Teachers should make sure the ideas are
feasible within the context of a year. Often times, students who have heard of things like
"machine learning" or "quantum computing" will suggest these ideas; however, it will probably
not end well for the student at the end of the year. Students should also try to be somewhat
focused in their idea -- for example, "games" could be refined to a particular game like "pong",
"tic-tac-toe" or "checkers", amongst other games.

After students develop an idea, they will write a proposal for their idea. In their initial

proposal, students should detail as much as possible what their idea is and how they would
accomplish it, including a sample timeline. The students should know that this is a non-binding
proposal and that proposals often change direction and timing, just like in real life. A sample
worksheet is in Appendix 2. For the teacher, this can be an assessment of a student's initial
writing skills. The teacher should also anticipate possibly modeling the proposal for the students,
so they have an exemplar proposal. Suggested sentence stems are in Appendix 3.

Finally, it may be that a student picks a project for which you do not have experience

guiding a student in. Students should learn some self-sufficiency and reliance. Teachers may

need to teach students about how to find reputable sources for information that they may need,
and express a desire to learn more -- it is a good opportunity to have students collaborate and
learn from each other!

Component 2: Progress Checks & Component 3: Developing the product/project

Students should work on the project throughout the year. The progress checks can be
done at any interval that you wish. Here are some general tips about progress checks and
developing the project.

Progress checks can be done as a small, written mini report. In these mini-reports,

students report on their progress on the project and where they will go next. (See Appendix 1 for
a sample progress report in this style). Another way to do a progress check is to do a group
chat/discussion, much like how the Scrum development style is used in the industry. 26 In the
Scrum software development style, the software development is split into sprints of a certain
duration, where developers work on the project, and scrums, where the team comes back
together to discuss the progress of the project and where to go next. While students will be
working on this project on their own, feedback from other students will be valuable. Students
will also practice verbal communication and questioning through the group discussions.

One-on-one progress checks between teacher and student are also valuable ways for

students to gain experience in communication. A suggested way to conference with the student is
to use their project proposals and progress checks to gain a better understanding of the student's
project. Because it is very likely that the teacher does not know about the project or how the
project should work, it helps the student gain more confidence in their project as well as learn
how to communicate effectively.

Additionally, there may be some modeling required of the teacher, especially during the

proposal and first few formal reporting sessions. However, by setting a hard word limit on the
written portions as well as giving students guiding questions, I anticipate a lot of stress for the
students will be mitigated. By also giving students guiding questions, you can give them a clear
direction on how to approach the project as well as create a sense of accomplishment for students
that are not confident in their writing. The one on one sessions can be done during a class period
or two -- have some guiding questions during the meeting as well to help focus both parties on
the task at hand.

26 “Scrum (Software Development).”

Component 4: Presenting the finished product/project.

Along with developing the project, the student should be working on their presentation.
The presentation can be much like the AP Computer Science Principles Create Task, where the
students create a short 1 minute video of their program running as well as write a short, 750 word
paper on their project, detailing the purpose of their program and highlighting an algorithm and
abstraction present in the project. I recommend the students instead create a "computational
artifact" for their program and a short 750 word paper detailing their development process
written in the technical writing style.

The "computational artifact" can be something like a collage of screenshots of their

program running, or perhaps a user manual in that style; however, encourage creativity by
discussing what a "computational artifact" entails (something created by the computer) and have
students discuss what and what is not a computational artifact. Examples of more creative
artifacts include an advertisement or commercial for their project, or a public service
announcement for projects that involve assisting a group of people or providing a service for the
community.

The short, 750 word paper is to make sure that students stay on the task at hand

(describing the project and the development process) and to make sure that students stay succinct
and descriptive about their project. In this paper, students should use the progress checks as a
guide for writing the portion about their development process. Encourage their writing by giving
them guiding questions for their paper, and by giving them sentence stems to help them write the
more difficult parts. See Appendix 3 for example guiding questions.

As part of the focus on communication, students should present the finished

product/project. In AP Computer Science Principles, the culminating activity can be the
submission of the Create task and a presentation of their project after the due date for the Create
task. In other CS courses, a presentation as part of the grading process would be valuable for
students to practice their communication skills. The CTE Advanced Studies course has a very
good template & rubric that you can adapt to the projects at hand.

Component 5: Reflection Piece

A reflection piece allows students to look back at how they improved in their

communication skills as well as allow them to look forward at what they can do to improve their
project. It will also allow the teacher to see what the students have learned and how much they
have grown with the project.

In the reflection piece, students should reflect back on a "glow" where they felt like they

accomplished the most, as well as a "grow" where students detail something that they could've
been better at, or maybe look forward to if they had more time. The reflection piece should be no
more than 2-3 paragraphs.

Appendix 1: Teaching Standards

These teaching standards come from the CSTA K-12 Computer Science Standards, Revised
2017. The standards are located here: https://www.csteachers.org/page/standards

2-AP-15 Seek and incorporate feedback from team members and users to refine a solution that
meets user needs.
This is covered in Component 3: Developing the Product/Project in the one-on-one meetings and
"scrum" style discussions. While students may not be working in formal teams, they should seek
out feedback from other students.

3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions
While event driven programming is not a huge focus of this CU, students should be designing a
project that fits their needs and choice. Not all projects need to address societal issues.

3A-AP-23 Document design decisions using text, graphics, presentations, and/or demonstrations
in the development of complex programs.
Students document their progress through their project using the progress checks and by keeping
track of all the changes that happen with their program. They can also "document" by
demonstrating their program and presenting their program at the end of the CU.

3B-AP-17 Plan and develop programs for broad audiences using a software life cycle process.
This goes hand in hand with 3A-AP-16 in that students will be developing their project through a
cycle of testing, feedback, and revising their project as needs and users dictate.

https://www.csteachers.org/page/standards

Appendix 2: Worksheets/Handouts

Worksheet 1: Project Planning Sheet
The 20% Time Project Planning Sheet

Project Goal: What will the project accomplish?

Project Product: I want an actual product, not
just a bunch of ideas. What product will lead
towards the goal?

Resources/Supplies: What will you need in order
to have the product done? Think about not only
the concrete but also the abstract, like knowledge.

Timeline: What’s your timeline for getting all of this done? Since we’re working backwards here, let’s
start with what you should have May 2019 and go on from there...

May 2019

March-April 2019

January-February 2019

November-December 2018

September-October 2018

Stretch goals. If you reach your first goal, what
are some other, secondary goals you would like to
accomplish too? (sounds like a Kickstarter here!)

And the hardest question: why do you want to
do this project? What kind of questions does
your product and progress aim to answer?

Worksheet 2: Progress Chart -- Weekly27

27 “2006_Advanced_Studies_Implementation_Guide.Pdf.”

Worksheet 3: Portfolio Rubric

Appendix 3: Resources for Teachers

The following are some guiding resources that I have used in the classroom with this project. Teachers
can opt to use these resources as part of their curriculum unit to help guide students on their tasks.

Sentence Stems for Component 1: Student Project/Proposals
The goal of the project is to: ________________________ (The student should dictate the
purpose of the program. It should answer the question of "what does this program accomplish?")

The product/project should ___________________ (Insert purpose here) by
_____________________ (The student should fill this in by stating how the program is going to
do it.)

In ________ (insert timeframe here), I will __________________ (insert task here).

Examples:

The goal of the project is to allow users to play a game of 20 questions.
The project should allow the user to play the game by asking the user yes-or-no questions about
what object they are thinking of. Then the program will try to guess after the 20 questions the
object. The computer wins if it successfully thinks of the object.
In September, I will learn how to use programming to determine the types of questions that the
program should ask.

These sentence stems should help the student think about their project in a focused way.

Guiding questions for Component 4: Presenting the project/product
● What was an instance where you had difficulty with the project. How did you resolve it?
● What was an instance where you had an opportunity to improve or extend your project?
● What were some programming structures that you utilized in the project? Would the

project be feasible without these structures?
● Explain a feature of your program and how it is crucial to the operation of the program.

Bibliography

“10 Skills You Didn’t Know Could Land You an IT Job.” Accessed September 14, 2019.

https://certification.comptia.org/career-change/exploring-it/skills-for-it.

“2006_Advanced_Studies_Implementation_Guide.Pdf.” Accessed November 17, 2019.

https://acrhs.buncombeschools.org/UserFiles/Servers/Server_92613/File/Staff/Lowman,
%20Mark/2006_Advanced_Studies_Implementation_Guide.pdf.

ACM Computing Curricula Task Force, ed. Computer Science Curricula 2013: Curriculum

Guidelines for Undergraduate Degree Programs in Computer Science. ACM, Inc, 2013.
https://doi.org/10.1145/2534860.

Anderson, Paul V., Sarah Heckman, Mladen Vouk, David Wright, Michael Carter, Janet E.

Burge, and Gerald C. Gannod. “CS/SE Instructors Can Improve Student Writing without
Reducing Class Time Devoted to Technical Content: Experimental Results.” In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, 455–64.
Florence, Italy: IEEE, 2015. https://doi.org/10.1109/ICSE.2015.178.

Anewalt, Karen. “EXPERIENCES TEACHING WRITING IN A COMPUTER SCIENCE

COURSE FOR THE FIRST TIME,” 2002, 10.

“AP® Computer Science A,” n.d., 218.

CMS Career & Technical Education. “Charlotte Mecklenburg Schools Career & Technical

Education.” Accessed September 21, 2019. https://discovercte.com/.

Colonnese, Madelyn W. “Instructional Guidelines for Elementary Mathematical Writing,” 2017,

10.

“CSTA Computer Science Standards Revised 2017.Pdf.” Accessed November 18, 2019.

https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Com
puter%20Science%20Standards%20Revised%202017.pdf.

Dugan, Robert F, and Virginia G Polanski. “WRITING FOR COMPUTER SCIENCE: A

TAXONOMY OF WRITING TASKS AND GENERAL ADVICE.” Journal of
Computing Sciences in Colleges 21, no. 6 (2006): 13.

Jackowitz, Paul M., Richard M. Plishka, and James R. Sidbury. “Teaching Writing and Research

Skills in the Computer Science Curriculum.” ACM SIGCSE Bulletin 22, no. 1 (February
1, 1990): 212–15. https://doi.org/10.1145/319059.323454.

Kaufman, J. “Technical Writing and Computer Programming.” IEEE Transactions on

Professional Communication 31, no. 4 (December 1988): 171–74.
https://doi.org/10.1109/47.9219.

https://certification.comptia.org/career-change/exploring-it/skills-for-it
https://acrhs.buncombeschools.org/UserFiles/Servers/Server_92613/File/Staff/Lowman,%20Mark/2006_Advanced_Studies_Implementation_Guide.pdf
https://acrhs.buncombeschools.org/UserFiles/Servers/Server_92613/File/Staff/Lowman,%20Mark/2006_Advanced_Studies_Implementation_Guide.pdf
https://doi.org/10.1145/2534860
https://doi.org/10.1109/ICSE.2015.178
https://discovercte.com/
https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf
https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf
https://doi.org/10.1145/319059.323454
https://doi.org/10.1109/47.9219

“NORTH CAROLINA CAREER AND TECHNICAL EDUCATION STANDARDS - Business,
Finance, and Information Technology Education - Computer Programming 1.” Accessed
September 14, 2019. http://center.ncsu.edu/standards/NCCTE/pdf/NCCTE.BP10.pdf.

Pesante, Linda H. “Integrating Writing into Computer Science Courses.” ACM SIGCSE Bulletin

23, no. 1 (March 1, 1991): 205–9. https://doi.org/10.1145/107005.107040.

“Scrum (Software Development).” In Wikipedia, November 1, 2019.

https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=9239
90081 Page Version ID: 923990081.

Tircuit, A. “Teaching Writing in Computer Science,” n.d., 8.

Tucker, Allen B. “Computing Curricula 1991.” Communications of the ACM 34, no. 6 (June 1,

1991): 68–84. https://doi.org/10.1145/103701.103710.

http://center.ncsu.edu/standards/NCCTE/pdf/NCCTE.BP10.pdf
https://doi.org/10.1145/107005.107040
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=923990081
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=923990081

	by Melody Lam
	Introduction
	Rationale
	Demographics
	Unit Goals

	Content Research
	General Teaching Methods

	Appendix 1: Teaching Standards
	2-AP-15 Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
	3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions
	3A-AP-23 Document design decisions using text, graphics, presentations, and/or demonstrations in the development of complex programs.
	3B-AP-17 Plan and develop programs for broad audiences using a software life cycle process.

	Appendix 2: Worksheets/Handouts
	Worksheet 1: Project Planning Sheet
	Worksheet 2: Progress Chart -- Weekly26F
	Worksheet 3: Portfolio Rubric

	Appendix 3: Resources for Teachers
	Sentence Stems for Component 1: Student Project/Proposals
	Guiding questions for Component 4: Presenting the project/product

	Bibliography

