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Synopsis:  Sometimes, seeing the entirety of a function is useful.  Sometimes, it can be 
overwhelming. In this unit, students will learn to manipulate time to focus on the 
important parts of a function.  Do they need to see what is happening at a specific time?  
They can slow everything down and zoom in on that instant!  Do they need to see what 
is happening at the far ends of the function? Let’s speed up time and zoom to infinity!  
In this unit, students will use their new-found time manipulation powers to find the 
limits of functions which will allow them to determine if functions are continuous and 
then to apply the intermediate value theorem.  Students will start the unit with a debate 
about what “close” means and why infinitesimals might not actually exist and will end 
up climbing over desks and trying to escape from the classroom without using the door.   
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Introduction 
 
“Get closer!” repeats the photographer at our annual back-to-school staff picture.  We dutifully 
squeeze in, trying to get this all over with.  “Closer!” he calls again.  Shoulders start touching; 
bodies begin angling like teeth in an overcrowded mouth.  Frustratingly, the photographer roars 
“closer!” yet again.  We exhale, roll our eyes, and our touching shoulders become touching arms, 
wrists, hands, and emotions.  We cross our fingers (figuratively – there is no space to do it 
literally) and we hope that the photographer is satisfied.  What were once minutes have started to 
ooze into seconds, the hands of the clock melting and dripping off of its face like the sweat off of 
our own.  Through this slow and sticky haze of time, the photographer’s mouth opens in slow 
motion.  We’re restless and hopeless - trapped by time and by space.  There’s nowhere to go 
but— “Closer!”  

     What counts as close?  Is there an ultimate “closeness” in which two numbers or objects 
cannot possibly get any closer to each other?  From the photographer’s point of view, people can 
always get closer to each other.  However, as people get closer and closer, time starts to slow 
down.  Every second takes longer and longer until time almost stands still, much like the 
compressed teachers.  As it turns out, a similar thing happens in math when numbers get close to 
each other.  It is easy to name a number close to, say, 87. Eighty-six is pretty close but, then 
again, 86.5 is closer.  Actually, 86.75 is closer.  Better yet, 86.999999999999 is really close to 87 
but, no matter how close of a number we name, there’s always a closer number – we just have to 
add more decimal places. Adding more decimals means that it takes longer and longer to name a 
close number and thus it feels like time is slowing down again. 

     I have spent a lot of time thinking about the abstract idea of close numbers (which are called 
limits) because it is foundational to understanding higher-level mathematics.  Everything in 
calculus and beyond relies on understanding the idea of closeness and the infinitesimal (which is 
the difference between two numbers that are close).  Throughout my teaching career, I have 
noticed that students really struggle with the inexactness of “close” and, more than that, they 
struggle to even see the point of closeness in math.  Why would you plug “almost 4” into an 
equation? Why not just 4?  Unfortunately, there are many students who cannot get past these 
struggles and who are thus unable to fully access higher-level mathematics.  The goal of this 
curriculum unit is to aid those students in developing a better understanding of closeness (i.e. 
limits) and infinitesimals so that they can move from arithmetical math into abstract math. 

     My students are usually successful in math, with the vast majority earning A’s or B’s in all of 
their previous math classes.  Some of them are good at memorizing processes and formulas and 
others are good at understanding and making connections.  The ones who are good at 
memorizing are starting to find that it is not enough anymore and their grades are starting to slip 
down below the level with which they are comfortable.  All of my students are in the IB program 
and most have the goal of getting an IB diploma.  They are college-bound, taking a full load of 
IB courses, involved in tons of activities, and, in general, they are overwhelmed.  Several of my 
students come with accommodations for ADHD and/or anxiety.  In spite of all of that, they are 
generally curious, good-natured, and willing to do whatever I ask of them, especially if they 
know why I am asking it. The problem with this curriculum unit is that my students do not know 
why we need to do it and, on top of that, they also do not understand why they struggle with this 
concept more than any other one we have explored so far.  Generally, I take a very abstract 



approach to teaching limits because that is how I understand the topic. My students clearly 
understand things differently than I do and so I need to take a more concrete approach that 
connects to their own personal experiences. 

     The student population at our school is diverse, with 44% of the students being African 
American, 22% Hispanic, 21% white, 9% Asian, and 4% being more than one race. Fifty-two 
percent of our student body is female and 48% is male. We are a Title I school with 
approximately 2000 students and 58% of our students receive free or reduced price lunches.1 In 
my IB Math SL1 classes, 58% of my students are female and 42% are male.  My classes are still 
diverse but white and Asian students are over-represented (37% and 12% respectively) while 
African American students are under-represented (21%).  I have three different sections of IB 
Math SL1; one section has 30 students, another has 20, and the third has 17.  My classes are 90 
minutes long and meet every other day.  My students are all 10th or 11th graders and, after they 
complete this course, they will either take IB Math SL2 or AP Calculus AB/BC. 

     For this curriculum unit, the learning goals are as follows: 

• Students will understand the informal ideas of an infinitesimal, a limit, convergence, and 
continuity 

• Students will be able to communicate with limit notation for one- and two-sided limits 
• Students will be able to use graphs, tables, and algebra to calculate finite and infinite 

limits 

     In general, my goal for this unit is to get students comfortable with the idea of getting 
infinitely close to a number without actually reaching it.  They should also be able to 
differentiate between being close to a point and actually being at a point.  I would also like for 
them to understand why those two concepts are important and in what situations each of them are 
useful.  Previously, I have not included any real world problems in this unit but I would like to 
have students also apply limits to situations that are not strictly abstract.  Prior to this unit, 
students will have studied all of the basic parent functions with the exception of the 
trigonometric functions.  Students will know how to simplify various algebraic expressions 
including exponential and logarithmic expressions.  Students will also be able to graph functions, 
including piece-wise functions, with and without a calculator.  They will also be able to interpret 
and evaluate functions in a variety of representations, including tables, graphs, algebra, and 
words.  In addition, students will also have studied sequences and series, particularly arithmetic 
and geometric sequences and series.  They will already know what “convergent” and “divergent” 
mean in a mathematical context as well as being able to determine if a series converges.  Until 
now, though, everything they have done in math has a precise answer.  “Almost” and “close to” 
have not been part of the solving problems – at least, not since they learned about estimating in 
elementary school.  This unit changes all of that. 

     My students are not the first group of people to have a problem with the idea of infinitesimals.  
“Even as late as the 1730s the High Church Anglican bishop George Berkeley mocked 
mathematicians for their use of infinitesimals, calling these mathematical objects ‘the ghosts of 
departed quantities.’”2  Infinitesimals have long been controversial.  Everything else in math is 
quantifiable, even the so-called imaginary numbers.  How is it possible that mathematicians are 
completely fine with something as ill-defined as the infinitesimal?  And make no mistake – it is 



ill-defined.  The Stewart book, a gold standard amongst calculus textbooks, defines an 
infinitesimal as “arbitrarily small” or “sufficiently small (but not 0).”3 In fact, by its very nature, 
the infinitesimal cannot be defined.  As shown above, with the photographer example, it is 
always possible to move closer to an object or number.  If we decided to define the infinitesimal 
as being equal to 0.1, then we are saying that it is not possible to be any closer to another number 
than that which is easily disprovable.  In fact, no matter how small we decided to make the 
infinitesimal, we could always choose a smaller number by adding in another zero.  In other 
words, instead of the infinitesimal being 0.1, we could add a zero and make it 0.01.  We can still 
go smaller though: 0.001 or 0.0000001.  There is no limit to how many zeroes we can include 
and thus there is no possible way to exactly define what an infinitesimal equals.  

Content Research 

Amir Alexander succinctly describes the problem with defining infinitesimals, which he refers to 
as “indivisibles,” in his book, Infinitesimal: 

Every line is composed of a string of points, or “indivisibles,” which are the line’s 
building blocks, and which cannot themselves be divided.  This seems intuitively 
plausible, but it also leaves much unanswered.  For instance, if a line is composed 
of indivisibles, how many and how big are they? One possibility is that there is a 
very large number of such points in a line, say a billion billion indivisibles.  In that 
case, the size of each indivisible is a billion-billionth of the original line, which is 
indeed a very small magnitude.  The problem is that any positive magnitude, even 
a very small one, can always be divided…The other possibility is that there is not 
a “very large number” of indivisibles in a line, but actually an infinite number of 
them.  But if each of these indivisibles has a positive magnitude, then an infinite 
number of them arranged side by side would be infinite in length, which goes 
against our assumption that the original line is finite.  So we must conclude that the 
indivisibles have no positive magnitude or, in other words, that their size is zero.  
Unfortunately, as we know, 0 + 0 = 0, which means that no matter how many 
indivisibles of size zero we add up, the combined magnitude will still be zero and 
will never add up to the length of the original line.  So, once again, our supposition 
that the continuous line is composed of indivisibles leads to a contradiction.4 

     So then, if an infinitesimal cannot have a positive size or zero size, what can it be? (The 
obvious – but completely wrong – answer that presents itself is “it has a negative magnitude!”  
That idea has all of the same problems as an infinitesimal with a positive magnitude though since 
negative numbers can be divided just as easily as positive ones.  It also has the additional 
problem of making no sense, as the distance between two numbers cannot be negative.)  If the 
idea of an indivisible mathematical building block is paradoxical, than perhaps it does not 
actually exist at all.  In other words, infinitesimals do not exist precisely because quantities can 
always be split into smaller and smaller pieces. In fact, both Plato and Aristotle agreed that “the 
concept of infinitesimals was erroneous and that continuous magnitudes can be divided ad 
infinitum.”5 At that time (300-400 BC), geometry was the king of mathematical reasoning.  If 
something could be proven geometrically, it became an unalienable truth of mathematics.  If it 
could not be proven geometrically or worse, if it led to a geometric paradox like the infinitesimal 
did, then the idea was disregarded.  Therefore, in the world of Plato and Aristotle, an 



infinitesimal did not pass mathematical muster and it made sense for them to discard the idea. A 
century later, however, Archimedes once again examined the infinitesimal and “fully aware of 
the mathematical risks he was taking, he chose to ignore the paradoxes of the infinitely small 
thereby showing just how powerful a mathematical tool the concept could be.”6  Like the 
imaginary number, the infinitesimal has become the foundations of modern math.  Without it, 
calculus would not exist.  Archimedes had an inkling of the powerful things that could come 
from the infinitesimal but, unfortunately, he did not have any students to carry on his work and 
other mathematicians avoided his un-geometric ideas.  For millennia, the existence of the 
infinitesimal was kept in the cobwebbed corners of history, sometimes examined but often 
forgotten and ignored.  

     In the 1500s, a group of progressive mathematicians reexamined the idea of the infinitesimal 
and deciding that its usefulness outweighed its risks and indefinability, they decided to 
incorporate it into their work.  However, the Jesuits had a huge problem with this.  “We consider 
this proposition to be not only repugnant to the common doctrine of Aristotle, but that it is by 
itself improbable and is disapproved and forbidden in our Society,”7 ruled the Jesuits.  “The 
vision of eternal order was, to the Jesuits, the only reason mathematics should be studied at all. If 
infinitesimals were to prevail, it seemed to the Jesuits, the eternal and unchallengeable edifice of 
Euclidean geometry would be replaced by a veritable tower of Babel, a place of strife and 
discord built on teetering foundations, likely to topple at any moment.  The new mathematics 
undermined the very possibility of universal order.”8  The Jesuits, much like my students, 
expected math to be immutable and perfect.  Math used reasoning and logic and was always true.  
There were no messy ideas because math exactly described the physical world and that world 
had been designed by the Creator.  Thus the idea of an ill-defined, paradoxical infinitesimal was 
immediately dismissed.  Math could not be disorderly because the Creator was not disordered.  
The struggle between mathematicians and the Jesuits continued for a century.  Ultimately, there 
is still a struggle today between different factions of mathematicians because of the vaguely 
defined concept.  Even Bertrand Russell, a philosopher and mathematician in the early 1900s, 
declared that infinitesimals are, at best, a “pseudoconcept.”9  So it’s only natural that students 
struggle with the idea, too. 

     Once students have made peace with infinitesimals (whether they believe in them or not), the 
idea of a limit can be explored.  Limits look at the value of a function as the input gets close to a 
certain number.  Functions often describe real world situations and, usually, the input (or the 
independent variable – the one we can only choose but not control) is time.  To get arbitrarily 
close to a certain time, we need to be able to slice time into smaller and smaller pieces, which is 
actually quite an easy thing to do these days since “time is more accurately measured than any 
other physical entity.  It has become increasingly precise.”10  This precision allows us to break 
time down into unthinkably tiny pieces.  There are a couple of problems, of course.  The first is 
that time, like the infinitesimal, may not actually exist.  The second problem is that (assuming 
time does exist), we have a lot of trouble observing such small durations with our own senses.  
Things move and change too quickly for us to see with our own eyes.  Luckily, the fist problem 
(the existence of time) actually helps us deal with the second problem. 

  

  



    There is a potential that time does not actually exist, or at least not in the way that we typically 
think of it.  “Nothing in known physics corresponds to the passage of time.  Indeed, physicists 
insist that time doesn’t flow at all; it merely is…Physicists prefer to think of time as laid out in 
its entirety – a timescape, analogous to a landscape – with all past and future events located there 
together.”11 This makes sense from a mathematical perspective, too; after all, we can see a whole 
function all at once and we can use any time that we want to as the input for a function.  We do 
not need to wait for time to pass until we get to the input we want – eagerly watching our 
stopwatch, holding our breath as the time gets closer, and then shouting, “plug in 8 minutes 
now!”  We can just choose any time, put it into our function, and then see what the outcome is.  
In a sense, it is a way of time traveling but it is traveling in the same way that walking across a 
room is traveling.   Time becomes just another dimension.  “All moments, past, present and 
future, always have existed, always will exist...It is just an illusion we have here on Earth that 
one moment follows another one, like beads on a string, and that once a moment is gone it is 
gone forever.”12  An immediate example of that is the paper you’re reading right now.  The 
whole paper is here, was here before you started reading and will be here after you’re done but 
you’re only reading one sentence of it at a time. You don’t know what’s in the upcoming 
sentences because those are in the future. The sentence you’re currently reading is the present 
and the ones you’ve already read are the past. You can go back and forth between sentences (you 
can time travel right now!) or you can read them sequentially from the first to the last (if you’re a 
traditionalist).  Unfortunately, traveling through time in our real lives is not as easy as skipping 
around in a paper but, in math and physics, it really is that easy. And so we come back to the idea 
of limits. 

     To really be able to accurately assess what a function is doing, we need to slow down time.  
The superhero Quicksilver demonstrates this perfectly in the movie X-Men: Days of Future Past.  
A showdown is about to happen – the bad guys face off against the good guys and fire their guns 
before anyone can react.  Well, anyone aside from Quicksilver.  He is able to travel faster than 
the bullets, the rain, Wolverine’s claws, and pretty much everything.  While he moves around the 
room at this supersonic speed, he has plenty of time to observe everything that’s happening 
because it all seems to be moving in slow motion relative to him.  He moves individual bullets, 
people’s hands, knives, soup, and anything else that he wants to.13  Just as Quicksilver slows 
down time by completing more movements in smaller and smaller durations, we can also do that 
with functions.  If we need to see what is happening at a given point (i.e. if we need to find the 
limit), we can take more measurements, getting closer to that point in increasingly small steps in 
time.  As we start evaluating the functions at smaller intervals, its value becomes clearer and 
clearer just as, when Quicksilver started moving faster, it became easier and easier to see where 
the bullets were.  At a certain point, if we take small enough steps in time, the function’s 
movement appears to cease and it is obvious what the limit is. 

     On the other extreme, sometimes we want to figure out what the “ends” of a function are 
doing.  (“Ends” is a common math term but it is slightly misleading because, typically, a 
function continues infinitely in both directions so functions do not really have ends in the usual 
sense of the word.) For this, we need to speed up time by taking larger and larger steps.   An 
example of this comes from Star Trek: Voyager.  On one of their missions, the Voyager comes 
across a previously unknown planet.  After some exploration, the people on the Voyager 
spaceship discover that they are traveling through time approximately 85,000 times slower than 
the people on the planet, Tahal-Meeroj14 are experiencing it.15 When the Voyager first arrives, 



the people below are in their stone age.  Within hours on the Voyager, the planet’s civilization 
has advanced to the equivalent of medieval Earth.  The crew of the Voyager watches this 
evolution and the first officer comments, "We might miss the rise and fall of a civilization" to 
which the chief engineer responds, "So, we'll watch the next one."16  Later on in the episode, 
after the people develop space technology, two astronauts travel to the Voyager and one of them 
asks, "So you really haven't been watching us for centuries?" The captain replies, "Actually, we 
just got here.”17 This episode parallels what happens when we look for the end behavior of 
functions.  We have to get as close to infinity as we can which means traveling across large 
amounts of time, which is what the Voyager did relative to the people of Tahal-Meeroj.  From 
the planet’s point of view, the Voyager and its inhabitants move incredibly slowly (in space) but 
it was exactly that slow spatial movement that allows them to travel across so much time so that 
they could see what happened at the “end” of the planet’s timeline.  When looking for the limit 
of a function as its input approaches infinity, we start by choosing a very large number as the 
input.  Then we choose an even larger number to input.  We keep repeating that process, 
choosing larger and larger inputs until the function stabilizes and stops changing.  Then, we can 
make our observation about what the end of the function does.  Again, this paper is another 
example of taking large steps through time.  We started examining the situation in 300 BC with 
no idea how infinitesimals would be connected to time. Then, after moving across large stretches 
of time to 1500AD, to 1900AD, and finally ending up in the 24th century, we know see how 
infinitesimals, limits, and time are all related to each other.  Time manipulation is a very useful 
skill to have when you’re doing math. 

Instructional Implementation 

Teaching Strategies 

When presenting all of this information to students, I plan to start much the same way that I went 
through the history of infinitesimals.  We will start by discussing what “close” means in various 
contexts: in elevators, at the school dance, while driving in bad weather, in class during a test, in 
horseshoes, and so on.  We will try to come up with a definition and we will try to figure out 
how close two things can be in all of those contexts.  From there, we will generalize “closeness.”  
I will ask students if there is an ultimate closeness where two things could not possibly be any 
closer. I also want to introduce them to Zeno’s dichotomy paradox by telling them I am going to 
run into the classroom wall.  Naturally, before I run all the way into the wall, I have to run 
halfway across the room and so I do.  Then, before I can run the rest of the way, I have to run 
half of that distance.  And so on until my students are disappointed that I did not run into the 
wall.  (But did I get close to the wall?  We will talk about it.  They will likely say, “Not close 
enough.”)  Another of Zeno’s paradoxes is the Arrow Paradox which is very similar to the line 
and indivisibles example given previously.  In any instant of time, an arrow in flight is not 
moving.  You can look at whatever instant you want to, but the arrow will always be still.  And 
yet, the arrow manages to fly across a distance if you look at time as a whole.  But, as we saw 
before, adding a lot of zeros together results in zero so where does that motion come from?   

  



     From those conversations and demonstrations, we will move onto the idea of the infinitesimal 
and possibly try to come up with our own definition.  At some point, I expect my students will 
also split into two factions: those opposed to the infinitesimal and those who support it.  I will 
give them the chance to debate with each other, to point out the problems in the other side’s 
arguments, to ask questions, and to challenge each other’s thinking. I do not expect there to be a 
unanimous agreement about the existence of the infinitesimal (since there is not even agreement 
amongst current day mathematicians).  At best, we will come to the decision that, even if we 
cannot agree on its existence, we can agree on its importance.   

     From there, we will examine that importance and what the infinitesimal can actually do. We 
will revisit Zeno’s paradoxes through a new lens, where time and space cannot be infinitely 
divided but rather are made up of discrete chunks – atoms for space and chronons (or moments) 
for time.  When its impossible for space to be infinitely divided, then Zeno’s dichotomy paradox 
only works until I am one atom away from the wall then there are no more half distances to 
cover, only one whole indivisible atom.  Finally, I will run into the wall and my students will see 
the utility of the infinitesimal. 

     Next comes the idea of a limit.  Students are familiar with limits in their everyday lives.  They 
can give me all sorts of examples of limits they have to deal with on a daily basis: speed limits, 
curfews, due dates for assignments, bells signaling the beginning of class, and so on.  As 
teenagers, they are deft at getting as close to a limit as possible without crossing it.  They know 
exactly what the boundaries are and they do not hesitate to run right up to them.  In class, 
students will share examples of limits in their own lives and how close they can get to them.  We 
will also play some guessing games together:  what temperature is it in the classroom?  How 
many jellybeans are in the jar?  How close can you get to timing 10 seconds without a clock?  
Students will do their best and the winners will get some sort of prize, even though the games are 
all just luck.  We will connect the games back to infinitesimals, closeness, and limits.   Then, we 
will try to describe those games using mathematical notation.  I will lead them from the informal 
vocabulary to the formal notation for limits.  

     As we develop the formal notation, we will also start examining functions in their various 
representations.  Unbeknownst to students, all of the games and conversations we have had so far 
were functions in a verbal form.  I will make that connection clear for them and then we will 
move into functions represented as graphs, then tables, and then algebra.  During this time, we 
will also watch the videos I cited earlier (X-Men and Star Trek) and discuss their relationship to 
limits.  We will also spend a lot of time talking about time itself.  As described previously, limits 
are closely related to time manipulation so students will need to have an understanding of how to 
slow down/speed up time to properly calculate limits.  We will come up with a Time 
Manipulation how-to guide for themselves and potentially to share with future students to aid 
them in finding limits.  The guide will include not only how to manipulate time but also the 
situations in which each method would be appropriate. 

     After that, we will travel back to the beginning of the unit and revisit our discussion about 
infinitesimals.  Students will reflect on the unit and reevaluate their feelings about infinitesimals.  
We will discuss the importance and existence of infinitesimals and students will resume their 
debate.  Finally, the unit will end with an exam that tests their understanding of limits as well as 
their skill in using limits to solve problems. 



Classroom Lessons and Activities 

General Timeline of Unit 

Day 1. 
Closeness and 
Infinitesimals 

Day 2. 
Intro to Limits 
and 
formalization. 
Graphs without 
numbers 

Day 3. 
Graphs with 
Numbers. 
Tables. 

Day 4. 
Revisit debate. 
Quiz. 

Day 5. 
Graphs and 
functions. 
Finding limits 
algebraically 

Day 6. 
Finding limits 
algebraically, 
continued 

Day 7. 
Continuity 

Day 8. 
Intermediate 
Value Theorem 

Day 9. 
Review 

Day 10. 
Self-Assessment 
and Test 

 
Description of Unit and Activities 

To begin the unit, students will watch the Quicksilver scene from X-Men, Days of Future Past.  
We will begin with the real-time version of the scene, in which we see the events from the other 
characters’ perspectives. In this version, we see our heroes in a dire situation when, all of a 
sudden, the bad guys get knocked out, drop their weapons, and fall unconscious.  After watching 
the video, students will be asked several questions: What happened? How close did Quicksilver 
get to the knives and to the bad guys? How close did the bad guys get to winning? How close did 
the good guys gets to losing (or dying)?  How close did the bullets get to the good guys?  
Students will discuss their answers in a very brief Think/Pair/Share because, at this point, they 
should not really be able to answer any of the questions.  Then we will watch the same video but 
from Quicksilver’s point of view.  After this viewing, students will again do a Think/Pair/Share 
to discuss the same questions as before.  This time, they should be given more time to discuss the 
answers since they will actually be able to see what happened.  As an extension, students can 
also be asked to discuss why the second video gave them more answers than the first video and 
why the videos were in slow-motion or not depended on which characters’ perspectives we were 
following. 

     After the introductory videos and discussions, students will be put into groups of three to four 
for a board meeting.  The goal of the board meeting is to define the term “close” in a general, 
real-world way and in a mathematical way.  Students should have 5-10 minutes to discuss their 
definitions within their groups and to write their definitions and examples on their boards.  Then, 
the groups will all come together and the whole class will have a board meeting.  The details of 
the board meeting are described in Appendix 2. 

     Now that students have a good working definition of “close”, we will formalize the definition 
through lecture and note-taking.  The lecture will include the mathematical definition of “close,” 
a mathematical example, as well as introducing the vocabulary term “infinitesimal.”  Once the 
students have the idea that closeness can be defined in terms of the infinitesimal, we will have a 
debate about whether it actually exists or not (which is and has been an issue in mathematics 
since the possibility of the infinitesimal was first introduced).  Students will watch a video on 
Zeno’s Dichotomy Paradox that explains the problem: an arrow is still at any given moment in 



time and a stretch of time is composed of several moments so how does the arrow move 
forward?  The goal of the video and the conversation surrounding it is not to come to any 
conclusion or consensus.  The goal is to engage the students in a conversation about 
infinitesimals that is ongoing in the broader mathematical community.  There are no right or 
wrong answers here.  After watching the video, students will sort themselves into groups for a 
debate, the details of which are in Appendix 2.  Students will explain and defend their stances 
about whether the infinitesimal exists (or if it even matters that it exists) and will have an 
opportunity to change their stances after the debate.  (Note: This debate will be revisited 
throughout the unit, particularly after students have learned more about limits and have more of a 
context for infinitesimals.) 

 The next lesson begins with a lot of signs posted around the classroom.  (Examples of 
these signs are in Appendix 2).  Students will start with a Gallery Walk during which they will 
walk around the classroom and leave written comments on the signs about how the students obey 
(or do not obey) those signs.  More detailed Gallery Walk instructions are in Appendix 2.  The 
goal of this activity is to build the idea that limits can mean different things in different contexts.  
Some limits, like laws or not getting Gremlins wet, are firm: we can get close to doing them but 
not actually do them.  Some limits, like due dates, we can actually reach and, finally, some 
limits, like not eating before swimming, can be slightly crossed with minimal risk.  After the 
Gallery Walk, the teacher will lead the class in a discussion about things that they noticed or 
wondered about – what similarities they saw, what differences they saw, and what connections 
they made.  The discussion should also relate to math.  Students will be asked questions such as: 
how does this relate to closeness and infinitesimals?  Ideally, students will use infinitesimals or 
closeness to describe their behavior regarding the different limits. 

     From that discussion, we can begin to formalize the idea of a limit.  Students will work in 
pairs to go through the Limits Explorations in Appendix 2.  Each pair of students could work on 
all three of the explorations or each pair could focus on one exploration and then share their 
results with the class.  After doing the exploration, there will be a brief lecture on the formal 
definition and notation of limits (both 2-sided and 1-sided limits).  The examples at this point 
will be graphical (not numeric or algebraic).  After the lecture, students will individually work on 
the Know Your Limits worksheet. Alternately, this worksheet could also be assigned as 
homework. The correct answers will be posted and students will vote in a poll on Google Forms 
to determine which problems they would like more help on.  The problems with the most votes 
will be worked out by the teacher in front of the class.  Students could also volunteer to work out 
or explain those problems. After that, it will be an easy leap to working with graphs that have 
numbers.  Students will complete a worksheet to practice finding limits on graphs with numbers.  
(This worksheet could replace the prior Know Your Limits worksheet if necessary.) 

     The next step is to remove the graphs and keep the numbers.  Students will watch the 
Quicksilver video again (without the slow motion part).  They will be asked to find the limit as 
Quicksilver approaches the first police officer.  Naturally, this is impossible and students will 
complain and/or ask to watch the slow motion version of the scene.  They will get to watch the 
slow motion version and they will be asked the same question.  What is the limit as he 
approaches the first police officer?  The real goal of this activity is not to find the limit.  The big 
idea is that slowing time down makes it a lot easier to see what is going on.  The same is true for 
functions – looking at an entire graph is a lot of information all at once.  If we can slow time 



down, it will be easier to see what is happening to our function as it approaches a given input.  
From that introductory discussion, students will do a Think/Pair/Share to discuss what “slowing 
down time” means in terms of a function and how we could possibly slow down time on a graph, 
table, and in an equation.  This is a major concept of the unit so it is important that students have 
time to think about and discuss the answers to those questions.   After the discussion, students 
will explore limits numerically using the table on their graphing calculators.  In pairs, they will 
complete the numerical limits worksheet in Appendix 2. 

     At this point in the unit, students should be familiar with the big idea of a limit, closeness, and 
infinitesimals.  Students will revisit the debate on infinitesimals.  They will sort themselves into 
the same three groups as the first debate and the format of the debate will remain the same.  The 
arguments and evidence for each position may be deeper now, however, since students will 
incorporate what they have learned about limits.  Having this debate before the quiz will help 
students make connections between all of the information they have learned in this unit.  In turn, 
that will help them understand and apply these concepts better. 

     After the debate, students will take an individual quiz that focuses not only on the big ideas of 
the unit but also on the mathematical applications.  A sample quiz is included in Appendix 2.  

     Following the quiz, students will learn how to solve limits with algebra rather than graphs or 
tables.  This is essential due to the nature of the IB Math SL and AP Calculus exams.  Students 
are not allowed to use calculators on the exams and, in most cases, it is a lot more efficient to 
solve limits with algebra than with other means.  However, students can be insecure about their 
algebra abilities so it is beneficial to start this section with a review of how equations are related 
to graphs with a particular emphasis on discontinuities.  Students should understand that holes 
and vertical asymptotes are both caused by dividing by zero and that jump discontinuities come 
from piece-wise functions. These concepts can be reviewed through a lecture or by having them 
read the relevant part of their textbook. 

     After students remember how functions are related to their graphs, they will go through a 
limits activity that has them find limits graphically and then comparing those limits to the 
function’s equation.  The equations will get progressively more complex and the graphs will be 
relied on less and less throughout the activity.  By the end of the activity, students will be able to 
find algebraic limits and use the limit laws to more easily calculate more complex limits.  After 
the exploration, students will practice finding limits using algebra, tables, and graphs.  They can 
be assigned problems from the relevant part of their textbook. 

     Once students are comfortable with limits, they can move on to applications of limits and, one 
of the biggest relevant applications is continuity.  Class will start with a short story about an 
engineering competition between universities.  Each university was tasked with building a bridge 
across a river and roads that connected to it.  The results of the competition will be shown to the 
students and there will be a class discussion about what makes a good bridge and set of roads.  
Students will come up with the informal definition of continuity (in terms of roads and bridges) 
and then they will, in small groups, figure out how to translate that informal definition into a 
more formal mathematical definition.  The informal definition and its translation are below: 

  



• The roads must go to the same place  lim
𝑥𝑥→𝑐𝑐−

𝑓𝑓(𝑥𝑥) = lim
𝑥𝑥→𝑐𝑐+

𝑓𝑓(𝑥𝑥) 
• The bridge has to exist  𝑓𝑓(𝑐𝑐) exists 
• The bridge has to connect to the roads  lim

𝑥𝑥→𝑐𝑐
𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑐𝑐) 

     Students will then practice determining whether functions are continuous by applying the 
above definition.  They can be assigned problems from the relevant section of their textbook. 

     The last major topic in the unit is the Intermediate Value Theorem.  Students will be given 
two challenges: first, they must start inside the classroom and then get outside the classroom 
without going through the door.  (This should be impossible for them.  The goal is for them to 
realize that they cannot get outside without going through the door.)  The second challenge is for 
them to get from the back of the classroom to the front of the classroom without climbing over 
any desks.  (This should be trivial for them to do.)  After a small number of students have 
attempted/completed the challenges, students will do a Think/Pair/Share around the following 
questions: What was the difference between the two challenges?  Why was the first one 
impossible but the second one wasn’t? How do those challenges relate to continuity?  

     When students have come up with the informal idea that the second challenge was only 
possible because there were gaps between the desks (meaning that the desks were not 
continuous), the Intermediate Value Theorem can be formally introduced via a lecture.  The 
students already have an intuitive sense of what the IVT means so the instruction should focus on 
the mathematical language of the theorem along with the importance of a function being 
continuous (and that, if a function is not continuous, then the IVT does not apply). Students can 
then practice solving mathematical problems with the Intermediate Value Theorem. 

     After reviewing the unit, students will fill out a self-assessment and then take a test on the 
concepts in the unit.  After the test is graded and returned, students will fill out the second part of 
the self-assessment. 

Assessments 

Quiz  

Students will be assessed mid-unit with a quiz on the topics that have been learned so far. 

Self-Assessment 

Students will fill out a self-assessment about their study habits before taking the test.  After the 
test, they will complete the self-assessment.  The second half of this assessment focuses on their 
performance on the exam and how they can be better prepared for future exams. 

Test 

At the end of the unit, students will take a test on the whole unit. 

 



Appendix 1: Teaching Standards 

IB Math SL  

Topic 2.2  

The graph of a function; its equation 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). Function graphing skills. Investigation of key 
features of graphs, such as maximum and minimum values, intercepts, horizontal and vertical 
asymptotes, symmetry, and consideration of domain and range. Use of technology to graph a 
variety of functions, including ones not specifically mentioned. 

Topic 6.1 

Informal ideas of limit and convergence. Limit notation. 

Relevance and Rationale 

This unit focuses on developing an understanding of limits through the ideas of closeness and the 
infinitesimal. The more formal delta-epislon definition of a limit is alluded to but not directly 
taught.  Students will instead use the more intuitive “closeness” definition of a limit.  Students 
will start with a graphical approach to understanding limits and then to a numerical and algebraic 
approach. They will then apply their understanding of limits to continuity and then to the 
intermediate value theorem.  



Appendix 2: Instructional Materials 

Quicksilver Videos18 

 Slow Motion included: https://www.youtube.com/watch?v=T9GFyZ5LREQ 

 No slow motion: https://www.youtube.com/watch?v=w0obSpvhg9k 

Quicksilver Think/Pair/Share questions: 

• How close did Quicksilver get to the knives? 
• How close did the bad guys get to winning? 
• How close did Quicksilver get to dying? 
• How close did the bullets get to Xavier and Magneto? 
• Could those things have been even closer? 

Board Meeting Activity 

 In groups, students will write their answers on their white boards.  They should include 
the definition of “close” as well as real-world and mathematical examples of what “close” 
means.  After filling out their whiteboards, students will stand with their groups in a circle and 
hold their white boards up so that everyone in the class can see everyone else’s whiteboards.  
(Note: This activity works better with large white boards.  Alternately, each group can use 3-4 
small whiteboards: one for the definition, one for real-world examples, and one for mathematical 
examples.)   

If the class is large, the class can be split into two large groups with two board meetings running 
simultaneously.  The teacher can be in charge of one group and a specially selected student can 
be in charge of the other group or students can be in charge of moderating discussions for both 
groups while the teacher circulates between the groups.   

Another variation is to combine the board meeting with a goldfish bowl discussion where half of 
the class (ideally, two people from each group) take part in the board meeting and the other half 
of the class stands in a circle around the outside of the board meeting and watches the discussion.  
Students’ roles can be swapped between inner and outer circles midway through the discussion 
and the discussion should be able to continue since the “goldfish” students were actively 
listening to the discussion before.  

Once the whole class is in the circle, students get 1-3 minutes to silently read all of the boards. 
After reading the boards, a discussion starts, with the teacher moderating.  The suggested 
questions are below (but teachers are welcome and encouraged to add their own additional 
questions to deepen/extend the discussion. 

• What similarities do you notice? 
• What differences do you notice? 
• What connections can you make? 
• What does “close” mean? 



• How close can two numbers/objects be? 
• Are the English and math definitions of “close” close to each other? 
• (Extension) What happens if two things can’t get any closer? 

The key points that teachers should make sure to include in the discussion are listed below.  (The 
students ideally will come up with these in the course of the discussion.  The teacher’s job is to 
ask questions that help the students realize the key points.) 

• Essential: 
o There is not a precise definition for “close” 
o Two objects/quantities can always be “closer” together 

• Nice to include: 
o If two objects/quantities cannot get closer, then they are the same object/quantity. 

Zeno’s Dichotomy Paradox video: https://www.youtube.com/watch?v=EfqVnj-sgcc 

Infinitesimal Debate 

     Students will sort themselves into three groups, depending on their beliefs about the 
infinitesimal.  The groups are: Infinitesimals exist, Infinitesimals do not exist, and It does not 
matter whether infinitesimals exist or not.  In their groups, students will have a set amount of 
time to come up with arguments, evidence, and examples to support their position.  This amount 
of time can be adjusted to accommodate a variety of schedules.  Ten to fifteen minutes is 
generally enough time to come up with a sufficiently deep argument.  After each group has 
developed their argument, one group is chosen randomly or otherwise to go first.  They present 
their argument and the other groups have a chance to respond.  After the other groups respond, 
the presenting group has time to respond to those responses and conclude their argument.  The 
process is then repeated for each of the other two groups.  Then, students can vote on whether 
they think the infinitesimal exists or not.  Voting can be done in several ways: a Google form 
poll,  a Kahoot poll, paper ballots, etc.  Students could also physically move around in the 
classroom to stand with the group that represents their stance on the issue.   It is unlikely that 
there will be a consensus after the debate but this is a conversation that can be revisited 
throughout the unit and throughout the course. 

Gallery Walk: Instructions 

Students will walk around silently looking at the signs.  Each student will have some post-it 
notes that they can write comments on and stick to the signs.  They are each expected to write at 
least 3 comments.  Students will be prompted with the following questions: 

• Do you obey this limit?  How much? 
• What does this mean in your own life? 
• What happens if you disobey this limit? 

     Students can write their own comments or respond to comments from other students.  After 
students have written their comments and read the signs, they will return to their seats for a class 
discussion (similar to the board meeting).  



Gallery Walk: Signs 

Note: Signs should be printed on full sheets of paper (one sign per page) 

      

 

 

  



Limits Exploration  

Website: http://jwilson.coe.uga.edu/EMAT6680/Horst/limit/limit.html 

     Exploration 1: John is craving Taco Bell. John decides to walk to Taco Bell, but decides to 
travel is a very logical way. John will begin by traveling only half way from his house to Taco 
Bell in his first hour of walking. Within the second hour, John will travel half the remaining 
distance from his house to Taco Bell, or one quarter of the distance between his house and Taco 
Bell. During the third hour, John will travel one-half the remaining distance, or said another way, 
one eighth of the distance from his house to Taco Bell.  Will John ever get to Taco Bell?  If so, 
how long will it take him? If not, how close will he get? 

     Exploration 2: The Fibonacci sequence is the set of numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, ... 
where the next number in the sequence is the sum of the previous two (i.e. 21+34=55, so 55 
would be the next number in the sequence). Look at the ratios of pairs of consecutive numbers, 
for example: 

 

     Compute some additional ratios. What happens in the "long run"? Does the sequence of ratios 
tend to approach a specific value? 

 

     Exploration 3: Consider the function below. Is zero in the domain of the function? What 
happens as this function as x gets closer and closer to zero? In other words, is there a limit, or 
"long run" value that this function approaches as x gets close to zero? Begin by exploring this 
question with your calculator or mathematics software. Compare the graph and table values 
when you zoom in very close.  

 

 

 

 

 

 

 



Know Your Limits Worksheet19 

 

  



Graphs with Numbers worksheet20 

Based on the graph evaluate the following. 

1. f(x)lim
0x −→

= _____ 11. f(x)lim
6x −→

= _____ 

2. f(x)lim
0x +→

= _____ 12. f(x)lim
6x +→

= _____ 

3. f(x)lim
0x→

= _____ 13. f(x)lim
6x→

= _____ 

4. f(x)lim
1x −→

= _____ 14.    f(6)  =  _____ 

5. f(x)lim
1x +→

= _____ 15. f(x)lim
3x→

= _____ 

6. f(x)lim
1x→

= _____ 16.    f(3)  = _____ 

7. f(x)lim
5x→

= _____ 17. f(x)lim
1x −→

≈ _____ 

8.    f(1)  = _____ 18.    f(−1)  ≈ _____ 

9.    f(0)  = _____ 19. True or False:  f(x)lim
cx→

exists at every c on (1,3) 

10.    f(−2)  = _____ 20. True or False:  f(x)lim
cx→

exists at every c on (−2,1) 

Numerical Limits Exploration: http://ntweb.deltastate.edu/vp_academic/cwingard/St.%20Louis--
Limits.pdf 

Limits Quiz 

1. What does limit mean in mathematics? Give a definition in your own words. 
2. What is your personal belief about infinitesimals: do they exist? Why or why not?  
3. Name two different reasons that a limit would not exist. 
4. Which of the words does not belong? Justify your answer.   Limit, Infinitesimal, Close 
5. Find the following:  

a. lim
𝑥𝑥→−1

𝑓𝑓(𝑥𝑥) 
b. lim

𝑥𝑥→1
𝑓𝑓(𝑥𝑥) 

c. 𝑓𝑓(−1) 
d. lim

𝑥𝑥→−1−
𝑓𝑓(𝑥𝑥) 

6. Draw one function that has all of the following characteristics: 
a. lim

𝑥𝑥→−2
𝑓𝑓(𝑥𝑥) = 3 

b. 𝑓𝑓(−2) = 1 
c. lim

𝑥𝑥→1−
𝑓𝑓(𝑥𝑥) = ∞ 

7.       a.   Explain how you would find the limit of �1 + 1
𝑥𝑥
�
𝑥𝑥
 as 𝑥𝑥 approaches 0. 

b. Find the limit of �1 + 1
𝑥𝑥
�
𝑥𝑥
 using the method you described in part a. 



Limits: Algebraic Exploration 

1. Given the function 𝑦𝑦 = 5𝑥𝑥:   
a. Graph the function. 
b. What is the limit of the function as 𝑥𝑥 approaches 1?  
c. How does the answer from b relate to the original function? 

2. Given the function 𝑦𝑦 = 5𝑥𝑥 + 2:   
a. Graph the function. 
b. What is the limit of the function as 𝑥𝑥 approaches 1?  
c. How does the answer from b relate to the original function? 
d. How does the answer from 2b relate to the answer from 1b?  Why do you think 

that relationship exists? 
3. Use what you learned in #2 to find lim

𝑥𝑥→4
2𝑥𝑥 − 1. 

4. Write a general rule for finding the limit of any polynomial at any given x value. 
5. Given the function 𝑦𝑦 = 5

𝑥𝑥
: 

a. Find the discontinuities. State their types and locations. 
b. Graph the function. 
c. Find the limit as x approaches 0. 
d. How does your answer from part c relate to your answer from part a? 

6. Given the function 𝑦𝑦 = 5
𝑥𝑥2

: 
a. Find the discontinuities. State their types and locations. 
b. Graph the function. 
c. Find the limit as x approaches 0. 
d. How does your answer from part c relate to your answer from part a? 
e. How does your answer from 6c relate to your answer from 5c?  Why does that 

relationship exist? 
7. How could you find a limit for functions with a vertical asymptote? 
8. Given the function 𝑦𝑦 = 𝑥𝑥2−1

𝑥𝑥+1
: 

a. Find the discontinuities. State their types and locations. 
b. Graph the function. 
c. Find the limit as x approaches 0. 
d. How does your answer from part c relate to your answer from part a? 

9. How could you find a limit for functions with holes? 
10. Challenge: Find lim

𝑥𝑥→4

1
√𝑥𝑥−2

 

 

 

 

 



Roads and Bridges Results21 

 

Self-Assessment 

-----------------------------Before taking the exam---------------------------------------------------------------- 
1. Approximately how much time did you spend preparing for this exam? 

  
2. What percentage of your test-preparation was spent in each of these activities? 

a. Reading textbook section(s) for the first time 
b. Rereading textbook section(s) 
c. Reviewing homework 
d. Solving problems for practice (on the study guide or otherwise) 
e. Reviewing your own notes  
f. Reviewing materials from course website  
g. Other  (Please specify) ____________________________________ 

 -------------------------------After the exam is returned ------------------------------------------------------------- 
3. Now that you have looked over your graded exam, estimate the percentage of points you lost due 

to each of the following. 
a. Trouble with (prior knowledge/other concept) 
b. Algebra or arithmetic errors  
c. Lack of understanding of the concept 
d. Not knowing how to approach the problem 
e. Careless mistakes  
f. Other (Please specify) _____________________________________ 

4. Based on your responses to the questions above, name at least three things you plan to do 
differently in preparing for the next exam.  

5. What can we do to help support your learning and your preparation for the next exam? 
 
 
 
 
 
 
 
 



Test 
 

1. For the graph of f, which of the given statements is true?  

  (A) 2)(
3

lim =
→

xf
x

      (B) 1)(
2

lim =
→

xf
x

 

  (C) )3()(
1

lim fxf
x

=
→

     (D) 0)(
3

lim =
→

xf
x

 

  (E) )(
1

lim xf
x →

does not exist 

2. If 7)(
3

lim =
→

xh
x

, which of the following must be true? 

                I. 
7)(

3
lim =

+→
xh

x
 

II. 7)3( =h  III. h (x) is continuous at x = 3. 

3. Let 




=
≠−

=
3,2

3,4
)(

2

x
xx

xg     Which of the following are true? 

  I.  g(3) exists  II. )(lim
3

xg
x→

exists III. g(x) is continuous at x = 3 

4. According to the table below 
x 3
lim f(x)
→

appears to be __________. 

x 2.5 2.8 2.9 2.99 2.999 2.9999 3.001 3.01 3.1 3.2 3.5 

f(x) 0.4 0.357 0.345 0.334 0.333 0.333 0.333 0.332 0.323 0.313 0.286 

 

                  

  5.a)
x 0
lim f(x)

−→
= _____                      6.a) 

x 0
lim f(x)

−→
= ______         7.a) 

x 1
lim f(x)

−→
= ______ 

     b) 
x 0
lim f(x)
→ +

= ______   b) 
x 0
lim f(x)
→ +

= ______                      b) 
x 1
lim f(x)
→ +

= ______ 

 



8.  Let 𝑓𝑓(𝑥𝑥) = 2 + 𝑥𝑥 − 𝑥𝑥2.  Use the Intermediate Value Theorem to determine whether there is 
at least one value for c in [0, 5] such that 𝑓𝑓(𝑐𝑐) = −4. Explain your answer.  Find the value of 𝑐𝑐 
that satisfies the IVT. 

9. Let 








=−
>−

<+

=
0,2

0,)1(
0,13

)( 2

x
xx

xx
xg .     

a) )(lim
0

xg
x +→

=       b)  )(lim
0

xg
x −→

=  

c) Does )(lim
0

xg
x→

 exist? Explain. 

 d) Is g(x) continuous? Justify your answer. 

10. )4(lim 3

1
−

→
x

x
 11. 








+
−

→ 1
3lim

0 x
x

x
  12. 








−
−

−∞→ 74
45lim 3

23

x
xx

x
        13. 









−
−+

→ 3
21

3 x
xlim

x
  

14. 







−

+−
+→ 2

65lim
2

2 x
xx

x
    15.

x
x

x

2
1

2
1

lim
0

−
+

→
 16. 

123
82lim 2

4 +
−+

−→ x
xx

x
    17. 

22
lim

ax

ax
ax

−

−
→

 (a ≠ 0) 

18. Find the value of k that makes f(x) continuous .𝑓𝑓(𝑥𝑥) = �
4𝑥𝑥2+5𝑥𝑥−6

𝑥𝑥+2 
      𝑖𝑖𝑖𝑖 𝑥𝑥 < 2

3𝑥𝑥 + 𝑘𝑘                  𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 2
 

 

  



Student Resources 

Khan Academy - Limits and Continuity: https://www.khanacademy.org/math/calculus-1/cs1-
limits-and-continuity 

There are a variety of videos, examples, and practice problems for limits and continuity.  
Students can get immediate feedback about their practice problems as well as getting helpful 
hints if they get stuck on a problem. 

Paul’s Online Math Notes – Limits: http://tutorial.math.lamar.edu/Classes/CalcI/LimitsIntro.aspx 

A very thorough explanation of limits and continuity.  If students want more detailed notes that 
what they got in class or if they need a different explanation than their textbook gives, this is an 
excellent site.  It explains the big ideas, the informal definitions, the formal definitions, notation, 
as well as giving examples of each topic. 

 

  



Teacher Resources 

Desmos - Limits and Continuity: 
https://teacher.desmos.com/activitybuilder/custom/574de5cdab71b5085a2aad42 

This is an extra lesson that can help connect the ideas of continuity and limits for students.  
Teachers can modify the lesson and give students a class code to access the activity.  Teachers 
can monitor students’ progress through the activity. 

IB Math SL problem bank: https://kahome.eu/acad/ibprobs.pdf 

A booklet full of practice problems for each IB Math SL topic.  There are not any specific limit 
problems but there are a lot of review problems for graphing functions that could be useful for 
review.  
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