Methods for Switchgrass Pretreatment using Ionic Liquids:

Ionic Liquid Synthesis from Lignin Model Compounds:

A synthetic route started with reduction of 10-20 g of a lignin-derived benzaldehyde (1-3) using dimethylamine gas and sodium triacetoxoborohydride in a 600 mL Parr pressure reactor (Scheme 1, Step 1). The products were purified using an acid/base extraction protocol to give 95+% pure dimethylbenzenamines, monitored by GC-MS and TLC (2:1 hexane:EtOAc + 1% dioxane). Fatty amine substrates were subjected to alkylation with dimethylcarbonate in the CBILSTM process (Step 2). The reactions were monitored by HPLC and TLC (B:4.2 hexane:EtOAc:MeOH + 1% dioxane). Workup involved removal of methanol solvent by rotary evaporation to give “Platform ILS” – trimethylboron amonium methyl carbanions. The methyl carbonate anion was easily exchanged with 1 M equivalent of any acid with pKa < 9 (Step 3). We selected acetic acid as it is well-known to dissolve cellulose when paired to allyl imidazolium cations.

Scheme 1: Synthesis of ILS from benzaldehyde and lignin model compounds (1-3)

Pretreatment Experiments:

With the ILS in hand, it was time to conduct the pretreatment experiments (Figure 4, Experiments 1-5). In total, 2 g of IL was added to ~100 mg of switchgrass (1% solids loading) and heated in #15Ace Glass Pressure Tubes on a thermostated aluminum block for 2-2.5 hours at 140°C (2). Upon completion, the mixture was washed with 1 x 10 mL methanol and dried in a 10 mL of DI water (60°C) to precipitate IL-free cellulose pulp (3) (4500 RPM, RT). Depending on IL and pretreatment severity approximately 20-50% of the biomass was recovered from the original 100 mg of switchgrass after drying overnight at 65°C in an oven (4). Interestingly, the 1% wash (containing most of the IL) from TMBzAM MC pretreatment was readily converted to its acetate suggesting that ion exchange with a hydrophobic anion would serve to recycle MIC ILs after pretreatment.

Conclusions:

Additional pretreatment experiments (6-8b) were performed with Avicell PH 101 microcrystalline cellulose. While the enzyme loading was doubled, the hydrolysis reaction time was lowered by a factor of 3 and pretreatment temperature and time was lowered to 90°C and 30 min, respectively. Swelling of Avicell was apparent within minutes of addition of TMBzAM OAc at all temperatures tested. After a shortened enzymatic hydrolysis, with ~ 2x the enzyme loading, glucose yields were measured as high as 42 ± 12% (Exp. 8). It is noteworthy that the lower temperature Avicell pretreatment gave the best glucose yields (Exp. 6-8).

Results and Conclusions:

Table 1: Pretreatment and enzymatic hydrolysis reactions performed in this study

Figure 4: Glucose yields from pretreatment experiments shown in Table 1. Columns 6 and 8 represent average yields of duplicate experiments with standard deviations of ±1% and 12%, respectively.

Conclusions:

A robust and efficient synthesis of a series of quaternary ammonium platform ionic liquids was obtained using dimethyl carbonate, an environmentally benign alkylating agent, and a series of benzaldehyde starting materials derived from lignin across all species of terrestrial plants. A 2 x 2 comparison of the newly prepared cations with 1-ethyl-3-methyl imidazolium using coordinating methyl carbonate and acetate anions was performed. Results showed that glucose yields from TMBzAM OAc (Exp 3, 26%) were similar to those of EMIM OAc (Exp 5, 29%) under similar pretreatment and enzyme hydrolysis conditions. Also noteworthy is that EMIM MC pretreatment was run as a 30% solution in methanol and gave sugar yields <5%. This experiment could be repeated as a neat EMIM MC IL to accurately complete the 2 x 2 comparison. Our results from the model TMBzAM cation suggests that the lignin-derived cations will perform similarly, as they only differ in 1-3 methoxy groups (Figure 3). Future work will be directed towards repeating switchgrass and Avicell pretreatments with the lignin-derived ILS.

Works Cited:


Acknowledgements:

The authors would like to acknowledge generous funding from the National Science Foundation’s Advanced Technical Education Program (Grant # 1501636 Chemical and Bioenergy Technology for Sustainability awarded to Aaron Socha) and the Charlotte Teachers Institute for their Summer Research Experience for Teachers as well as Queens University of Charlotte for their facilities. EMIM MC was provided by Proionic, GmbH (Grambach, Austria). Dr. David Blauch (Davidson College) assisted with NMR confirmation of synthetic products.

Synthesis of Lignin-Derived Ionic Liquids and their Evaluation as Biomass Pretreatment Solvents

Andrew DeWeese1, Erika Williams2, Carla Aaron-Lopez2 and Aaron M. Socha4

1Charlotte Latin School, 2Phillip O. Berry High School, 3Whitewater Middle School, 4Queens University of Charlotte

Introduction and Research Rationale:

Bioresinifiers are facilities that convert plant biomass into fuels, power, heat and value-added chemicals. In terms of major unit operations (i.e. feedstock sourcing, cracking/decomposition, organic synthesis, product purification) biofining is analogous to petroleum refining. The main differences are that biofiners use raw materials (plant feedstocks) which are both renewable and domestically abundant, and often utilize microorganisms as tiny synthetic chemists.

Two CMS teachers from the Charlotte Teachers Institute’s 2018 Summer Research Experience Program and one high school student volunteer participated in an on-going research project at Queens University of Charlotte to make biofuels from switchgrass (Panicum virgatum), a perennial plant native to North America. Biofuels, such as ethanol, are produced from the fermentation of glucose by a microbe, such as yeast.

The plant cell wall is depicted in Figure 2, showing principal polymeric components (cellulose, hemicellulose and lignin). Their monomers, comprising sugars and monolignols, differ between plant types (e.g. grasses, softwoods and hardwoods).

Our overall project goal was to conduct a series of biomass pretreatments in order to convert switchgrass into fermentable sugars (glucose and xylose). Additionally, since lignin is typically considered a low-value product of biofining we sought to utilize the lignin as a solvent for processing the sugars. Lignin can be depolymerized by oxidation to give p-anisaldehyde, vanillin and syringaldehyde (Figure 2 top right).

Biomass pretreatment is designed to separate plant polymers so that the cellulose can be easily accessed by cellulase enzymes which hydrolyze the cellulose to glucose. Additionally, hemicellulose is hydrolyzed by hemicellulase enzymes to produce xylose.

We used a series of model compounds (benzaldehyde, p-anisaldehyde, vanillin and syringaldehyde) to represent oxidized lignin for the synthesis of bio-based ionic liquids (ILs). Certain ionic liquids are exceptional at dissolving both cellulose and lignin. A 2 x 2 study was then performed to compare pretreatment efficiencies of bio-based vs. petroleum-based ionic liquids. The structures and images of the ILs tested appear in Figure 3.

Enzymatic Saccharification and HPLC Quantification of Glucose and Xylose:

Washed biomass was pH adjusted to 5.2 using 0.9 mL of citric acid/citrate buffer (= 10% solids loading) – calculated from original 100 mg switchgrass. An enzyme “cocktail” containing 155 mg cellulase (CTEC) and 25 mg hemicellulase (HTEC) was prepared in 2.85 mL citrate buffer (total cocktail volume) and aliquots were added to hydrolyze the cellulose and hemicellulose to fermentable sugars, glucose and xylose. Saccharification reactions received approximately 17 µL of cocktail, corresponding to 0.92 mg cellulase and 0.15 mg hemicellase. This is a reasonable enzyme loading of 31 mg CTEC/g glucan and 6.7 mg HTEC/gram xylan.

Reactions were allowed to incubate at 50°C for 15 or 45 hr with gentle mixing (80 RPM) (5). The reactions were performed to compare pretreatment efficacies of bio-based vs. petroleum-based ionic liquids. The results and conclusions are depicted in Figure 4. Glucose yields were measured as high as 42 ± 12% (Exp. 8). It is noteworthy that the lower temperature Avicell pretreatment gave the best glucose yields (Exp. 6-8).

Figure 3: Ionic Liquids used in this study. A 2 x 2 study(131,706),(872,996) was conducted with 2 cations and 2 anions (left)