Measurements and Uncertainties in Science or How Do We Know That!

Debra Blake Semmier

Introduction

Science is a human adventure into trying to understand and predict the Universe around
us. Think of trying to understand the rules for a card game such as poker by watching
others play the game. Over time you will be able to decipher some of the rules and
predict who will win which hand. To reach the goal of understanding the Universe
around us we make observations and develop theories to the rules and test our ideas by
predicting the outcome of the next hand. This process is the scientific method.
Everything scientists do in their search for understanding is based on observations and
measurements. How much you know about something is related to how well you can
measure it. The famous physwlst Lord Kelvin stated that “when you can measure
somcthmg and express it in a number, you know something about it.” ! Measurement in
science is not a new concept but found its beginnings in ancient times when the sizes of
the Earth, Moon, Sun and the distances between them were determined by indirect
measurements. 1 want to use the measurements made by ancient astronomers to
demonstrate that measurements have been made since the beginning of societies and
many of the measurements were made to a high degree of precision. But even though
science has grown in its understanding of the rules of the Universe there are always
uncertainties in any measured quantity and some measurements even today have large
uncertainties. Scientists must understand what uncertainties in measurements are and
how they are propagated to correctly discuss the results for any experiment.
Experimentation is the backbone of any scientific theory and is always based in
measurements and measurements always have uncertainty.

Classroom Environment

I teach at an urban, partial magnet high school of about 1800 students. Approximately
600 students are part of the International Baccalaureate (IB) magnet. The school is
approximately 49 % African Americans, 28 % white, 15% Hispanics and 6 % Asian.
More than 50% of the student population is on free and reduced lunch. I teach
introductory algebra-based physics to tenth, eleventh and twelfth grade students on a
semester block program. The tenth grade students are part of the International
Baccalaureate (IB) magnet program at my school. I also teach advanced placement (AP)
algebra and calculus-based physics courses and the upper level IB Physics courses. The
IB Physics 2 and 3 are taught on an A-day/B-day schedule over two years with standard
level(SL) and higher level(HL) students mixed within the same classroom. I will use



most of the curriculum unit materials in the upper-level IB physics classes. Knowledge of
uncertainty analysis and error propagation is an integral part of the IB science curriculum.
The ideas presented and the uncertainties analysis will be used by all IB science students
and added to lower level physics courses.

History of Measurements

“Weights and measures may be ranked among the necessaries of life to every
individual of human society. They enter into the economical arrangements and daily
concerns of every family. They are necessary to every occupation of human industry;
fo the distribution and security of every species of property; to every fransaction of
trade and commerce; to the labors of the husbandman; to the ingenuity of the
artificer; to the studies of the philosopher; to the researches of the antiquarian; fo
the navigation of the mariner, and the marches of the soldier; to all the exchanges of
peace, and all the operations of war. The knowledge of them, as in established use,
is among the first elements of education, and is often learned by those who learn
nothing else, not even to read and write. This knowledge is riveted in the memory by
the habitual application of it to the employments of men throughout life.”

JOHN QUINCY ADAMS - Report to the Congress, 1821

The earliest societies needed tools to measure material to build shelter and clothing and for
bartering for food. The first measurement tools were parts of our bodies such as forearm,
hand or finger. Time was measured by the periods of the Sun, Moon or stars. When volume
was needed to be measured gourds or clay vessels were filled with seeds and the seeds
counted to estimate the volume. The “carat” that is still used as a mass unit for gems, is
derived from the carob seed. In the third century BC measurements of the size of the Earth,
Moon and Sun and the distance between them were made and the accuracy of some of these
measurement are surprisingly close to the modern accepted values.2

How Big is the Earth?

In 235 BC, an Egyptian geographer and mathematician, Eratosthenes, calculated the
circumference of the Earth based on the measurement of the shadow of a stick. Based on
Eratosthene’s observations he knew the Sun was at its highest point in the sky at the
summer solstice around June 22. At the summer solstice in any city on the equator, the
Sun is directly overhead and a vertical stick will not cast a shadow. At this time in
Alexandria, 800 km north of the equator the shadow of a stick was measured to be one-
eighth the size of the stick. From similar triangles, we see that this means that the ratio of
the shadow length to the stick height is proportional to the ratio of the distance from
Alexandra to the equator to the radius of the Earth. (See Figure 1 and 2)
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Therefore, the radius of the Earth is 8 times the distance from the equator to
Alexandria or 8 times 800km or 6400 km., We have since refined our measurements and
the radius of the Earth is found to be 6370 km, which is within 1% of the value that
Fratosthenes found. I wonder why we are taught that Columbus and the Europeans of the
fifteenth ce;ntury believed the Earth was flat, yet we knew the radius of the Earth as early
as 235 BC.
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How big is the Moon?

In 240 BC, Aristarchus was perhaps the first to suggest that the Earth spins on an axis and
this accounts for day and night and that the Earth revolves around the Sun once a year.
Aristarchus precisely measured the diameter of the Moon by using the shadow on the
Moon created during an eclipse of the Moon. An eclipse of the Moon is created when the
Moon passes into the shadow of the Earth. By carefully studying the shadow of the Earth
cast on the Moon, Aristarchus found that the width of the Earth’s shadow was 2.5 Moon
diameters. This would mean that the Moon’s diameter is 2.5 times smaller than the
Earth’s diameter. However, shadows taper over large distances (such as the distance
between the Earth and the Moon). Aristarchus determined that the taper of the Moon’s
shadow was equal to one Moon diameter by measuring the Moon’s shadow during a solar
eclipse, which was reduced to a point (see Figure 3). Using the data from the solar and
lunar eclipses, Aristarchus concluded that the diameter of the Earth was 3.5 times the
diameter of the Moon. So if the diameter of the Earth is 12,800 km the diameter of the
Moon would bel/3.5 times 12,800 km or 3,660 km. Today the accepted value is 3,640
km and his value is within 5%.*
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How Far is it to the Moon?

The early Greeks knew how to measure large distances by using ratios of sizes. If you

tape a dime or other coin to a window and view it with one eye so that it just blocks out
the full Moon, the ratio of the coin diameter to the distance from the coin is about 1 to

110. This is equal to the ratio of the Moon’s diameter to the Moon’s distance. (See Figure
4.) Therefore, the distance to the Moon is 110 times the diameter of the Moon and was
determined to be 403,000 km. Today after visiting the Moon, the distance is known to be
384,000 km. These values are within 5 % of each other.
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How far is it to the Sun?

Knowing the diameter of the Moon allowed Aristarchus to measure the distance to the
Moon. But to use this same method to measure the distance to the Sun, Aristarchus
needed to know the diameter of the Sun. The early Greeks repeated the coin on the
window exercise for the Sun and the ratio of the Sun’s diameter to the Sun distance is
also 1 to 110. This is because the Sun and Moon both have the same size to the eye from
the Earth and both taper at the same angle of about 0.5°. To determine the distance to the
Sun, the Sun’s diameter had to be known. Aristarchus made observations of the phases
of the Moon. He determined that when the Moon was exactly half full, the Sun must be at
a right angle to the observer’s line of sight (see Figure 5). The lines formed between the
Earth and the Moon, and the Earth and the Sun, and between Moon and the Sun form a
right triangle. If Aristarchus could measure a second angle between his line of sight to the
Moon and his line of sight to the Sun, the distance to the Sun and the diameter of the Sun
could be determined. This angle was very difficult to measure to any degree of precision.
One source of uncertainty is that the Moon and Sun are not points in the sky but rather
large objects compared to other sky objects. The measurements had to be made to their
centers (or either edge) and the angle was almost at ninety degrees. Aristarchus
measured the angle to be 87° and the modern day angle has been measured to be 89.8°.
Using right-angle trigonometry Aristarchus figured the Sun to be about 20 times more
distant than the Moon, when in fact it is about 400 times more distant. Aristarchus’s
measurement was not close to today’s accepted value of 150,000 ,000 km. Is this because
his meassurements were inexact or because he did not believe the Sun could be so far
away?
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Once the distance to the Sun is known, using the ratio of the diameter of the Sun to the
distance to the Sun of 1 to 110 allows us to calculate the Sun’s diameter. Another way to
measure the 1 to 110 ratio is to measure the diameter of the Sun’s image that is made

through a pinhole opening. (Figure 6)

d_ D _ 1
h ~150,000,000km_ 110

Figure 6

The ratio of the Sun’s image size compared to the distance from the pin hole is 1 to 110,
the same ratio of the Sun’s diameter to the Sun’s distance.®

Experimental Uncertainty

The early astronomers most likely knew their measurements were not exact. Even
scientists from the early twentieth century had to round any calculated values because all
calculations were completed without the aid of a calculator. Why would a scientist take
the time or energy to make a calculation to five significant figures if the measurement
were made only to two significant figures? In addition, any trigonometric function values
were found in tables and only listed to four significant figures within one degree of angle
measure. With the invention of the calculator, computation to twelve figures is processed
in the blink of an eye. Trigimetric functions are stored to 12 decimal places for any
angle, even angles that are humanly impossible to measure. How can we physically
measure an angle to the 1/100,000 degree? I believe the use of calculators has lead to the
misunderstanding of uncertainty of measurements by students. I know calculators are
here to stay and | am glad to have my calculator, but it means that more effort must be
placed on teaching students about significant figures, uncertainty and error.



Any measured quantity has some degree of uncertainty that can come from a variety of
sources. Any complete statement of a measured quantity must include an estimate of the
level of confidence associated with how the value was measured and a unit. Without an
estimate of the uncertainty in a measurement it is impossible to answer the question of
how well my result agrees with a theoretical prediction or other experiment.

There is a certain inherent inaccuracy or variation in any measurement we make. This
inherent inaccuracy or variation is called experimental error. The word error is not meant
to imply incorrect or incompetent, it merely reflects the condition that our measuring
instruments are imperfect. We can control lack of perfection in our procedures and
mistakes in calculation or writing data incorrectly. These mistakes have nothing to do
with experimental error and everything to do with the ability of the experimenter and can
be controlled.

Systematic Error

Systematic etrors are reproducible inaccuracies that are consistently in the same
direction. These errors are difficult to detect and cannot be analyzed statistically. If a
systematic error is identified when calibrating against a standard, applying a correction
factor to compensate for the effect can reduce the bias. Systematic errors cannot be
detected or reduced by increasing the number of measurements. For example you would
like to measure the mass of your apple you are eating for lunch and you find an electronic
balance in the classroom. When you place the apple on the balance it reads 187.45 g. You
know about repeating your measurement, so you repeat placing your apple on the balance
three times and get 186.98 g, and 187.33 g. You take a look at the apple and wonder are
these values correct? How do we know? So you decide to try and measure the apple on
another electronic balance and you find the mass to be 115.75 g. You repeat the
measurement three times with the same approximate value. All these measurement are
very precise because they have a specific value that is repeatable, but the measurements
are very different. This is because one or both of the balances is not accurate, that is it is
not close to the true value of the quantity. In order to measure the accuracy of a value a
true value must be known. In the case of the apple, the only way to find the true value for
the mass of the apple is to check both balances to a known standard mass.’

Random Error

Random errors are statistical fluctuation in both directions in measured data due to the
precision limitations of the measurement device. Random errors can be evaluated
through statistical analysis and can be reduced by averaging over a large number of
measurements. So how do you handle estimating experimental uncertainty for a single
measurement? For example, you measure the diameter of tennis ball and you use a meter
stick. The uncertainty might be + 5 mm, because of parallax in using a ruler to measure
the diameter of a round object. If you use a Vemier caliper the uncertainty could be
reduced to = 2 mm because the tennis ball is fuzzy. Do you measure to the ball or the



outside of the fuzz? In both of these cases the uncertainty is larger than the smallest
division on the scale because of the difficulty in using the instrument to it fullest
precision. The person making the measurement reports the uncertainty in a way that
clearly explains the quality of the measurement. All scientific measurements are reported
in the following format

Measurement = (measured value + standard uncertainty) unit of measurement

For example, the diameter of the tennis ball is 6.7 + 0.5 cm using a ruler and 6.7 + 0.2 cm
when using a Vernier calipers.

Multiple measurements of the same quantity will reduce random error. For example if
25 people were to measure the width of a piece of paper using a typical metric ruler there
would be 25 different measurements because each person would view the ruler from
slightly different angles and make different judgments about the exact reading. All of the
measurements would be distributed around a mean value of 21.6 cm. Most of the values
would be within a few hundredths of this value. A graph of the frequency of the
measurement versus the width of the paper would result in a histogram as shown in
Figure 7. The smooth curve superimposed on the histogram is the normal distribution
about a mean value of 21.6 cm.
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Figure 7

Random error almost always results in a bell shaped curve and the approximation of the
uncertainties can be determined by calculating the average deviation or the standard
deviation.

The average is the best available estimate of the measured quantity but still not exact. So
how do we express the uncertainty for this average value? One method is to use the
average deviation. This statistic tells us on average (50% confidence) how much the
individual measurement varies from the mean. The average deviation is calculated by
using the following formula:



- g — ®| + |xp = X|+...+|x; — X|
d =
N
The standard deviation is the most common way to characterize the uncertainties in the
spread of the data. The standard deviation is always slightly greater than the average

deviation and is used because of its association with the normal distribution. To calculate
the standard deviation for a sample of N measurements:

1. Sum all the measurements and divide by N to get the average, or mean.

2. Now, subtract this average from each of the N measurements to obtain N
deviations.

3. Square each of these N deviations and sum,

4. Divide this result by (N-1) and take the square root.

The formula for the standard deviation is as follows. Let the N measurements be
X1.X2....xy. Let the average of the N values be ¥. then the deviation is given by the
expression;

6x; = x; _%, for i=123...N

The standard deviation is:

o J(&f + 6x2..4+8x3) J T 6x?

(N-1) N CESY

The significance of the standard deviation is that within one standard deviation
approximately 68% of the measurements will be measured compared to the mean value,
95 % of the readings will be within two standard deviations and nearly all, 99.7%, will lie
within three standard deviations of the mean.

Propagation of Uncertainty

What if you use measurements to calculate a result that is dependent on the two or more
measurements? How is the uncertainty in each measurement propagated in the result? For
example, if you need to measure the area of a rectangle, Area = length x width. Let the
area be the function f and for the area, f = xy. The error in x is 0, and the errorin y is g,
for a single-variable function the deviation in f can be related to the deviation in x using

calculus: &f = (%) éx , Then take the square and the average results in gy = E«ﬂ Ox
so for the function f=xy

df _ df
ax YV dy*
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Dividing this equation by f =xy, will result in

% _ (25.)2 + (Ez)z

f X y
For velocity = displacement /time or resistance = voltage/current where the function is in
the £ = x/y format, the result of the partial derivatives will give the same result. In the

appendix is a table of common formulae and uncertainty formulae found using the partial
derivative.

If one of the uncertainty terms is more than three times greater than the other terms,
the root-squares formula can be skipped and the combined uncertainty is simply the
largest uncertainty.? In the appendix are student handouts that include summary notes,
the propagation of uncertainty table and student practice problems.

Modern examples of Uncertainties

1 want students to know that even though we now have the ability to measure incredibly
small masses such as the mass of an electron, 9.11 E -31 kg (notice only three significant
figures) and incredible distances such as the distances to stars and galaxies, there are still
limits to all measurements and in some cases large uncertainties. Even the best
techniques and instruments have limits to their measurements.

To determine the distance to stars, astronomers use geometric techniques that are
based on parallax. Parallax is the apparent displacement of an object because of a change
in the point of view. Parallax can be observed when nearby objects appear to shift their
positions against a distant background as you move from place to place. For stars, as the
Earth orbits the Sun, stars appear to move relative to the background of the more distant
stars.

The distance to a star can be determined by measuring the parallax (p). The parallax is
half the angle through which the star’s apparent position shifts as the Earth moves from
one side of its orbit to the other. (Figure 8) If the angle p is measured in seconds of arc,

then the distance d to the star in parsecs is given by the equation d = % . For example, a
starwhoseparallaxisi-arcsecisZparsecsﬁ'omtheEarth.
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The parallax of Proxima Centauri, our nearest star, is comparable to the angular diameter
of a dime seen from a distance of two miles (I could not see a dime two miles away!). Its
parallax is 0.77 arc sec, and thus its distance is 1.3 pc. Because parallaxes smaller than

about ‘56 arc sec are difficult to measure precisely for the Earth observatories, the
parallax method gives reliable distances only for stars nearer than about 20 pe?

The Hubble Constant

The Hubble constant is one of the most important numbers in astronomy. It determines
the rate at which the universe is expanding and thus tells us the age of the universe.
Because of its importance astronomers are very interested in an accurate determination of
the Hubble constant H,.

In order to determine the Hubble constant, an astronomer must measure the Doppler
red shifts and distances to many galaxies. Using the parallax method, from the Earth’s
surface, is impossible for distant galaxies. Astronomers use the apparent
luminosity(brightness) and periods of pulsating stars.

Hubble’s initial value for the expansion rate of the Universe, the Hubble Constant,
determined the expansion age of the Universe was only 2Gyr, but by 1930 radioactive
dating of rocks had shown that the age of the Earth was 3 Gyr (one Gyris 10'%years).
Hubble’s initial value for the constant was greater than 600 km/s/Mpc, but by 1960 the
value of H, was consistently less than 100 km/s/Mpc but with uncertainties of + 50
km/s/Mpc. Over the past few decades, leading astronomers reported values for the
Hubble constant that varied between 50 (km/sec)/Mpc and 100 (km/sec)/Mpc. The
difference of 50 km/s/Mpc is a difference in the age of the Universe of 10 Giga(10'
Jyears (9.7Gyr for Hy,= 100 and 19.4 for H, = 50). In recent years data from the Hubble
Space Telescope (HST) has greatly reduced the variation. '°



Conclusion

Even with all the technological advancement of the last century, computers, calculators
and lasers, scientific discovery continues to be based in observation and measurements.
To measure the Hubble constant, astronomers must measure the distance to a galaxy
using the apparent brightness and the red shift of the light from the galaxy. These
measurements are as difficult as the ones made by Aristarchus in measuring the distance
to the Sun. Iam going to use these ancient and modern scientific measurements to teach
students the importance of reporting uncertainty in experimental data and analysis. The
drawings and descriptions in this document will be used as a presentation on
measurements and uncertainties to my students. The handouts will be used as reference
and practice of the techniques of finding averages and standard deviation and error
propagation. The real test of this curriculum unit will be how students approach
reporting and analysis of data in the experiments they perform.
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Appendix 1 Student handouts
Review-Significant Figures Rules

Significant figures are critical when reporting scientific data.
The rules for significant figures are:

1. All non-zero numbers are always significant

2. All zeros between non-zero numbers are always significant

3. All zeros which are to the right of the decimal point and at the end of the number
are significant

4. All zeros which are to the left of a decimal point and are in a number greater than
or equal to 10 are significant. If you need the zero when writing the number in
scientific notation then it is significant.

When adding and subtracting numbers using significant figures round to the least
measured decimal point. When multiplying and dividing numbers using significant,
figures round to the least count in the measurements.

Guidelines for using uncertainties and significant figures.

The uncertainty, o, in the final result should have, at most, two digits, and generally only
one digit. All uncertainty calculations are estimates, and there is no such thing as an
“exact uncertainty.” The rule is if the first digit is 1, use 2 digits for sigma, e.g. ¢ =0.14
gor 6= 0.3 notc= 0.34g. If o is especially large, you will lose significant digits. For
example, suppose that multiple measurements are made with an instrument that is precise
to three sig, digs, and the mean value of 9.52 s is found, but for other reasons the data
points varied so that the standard deviation of the mean was 2 s. The result would have to
be reported as 9 + 2 s.

If the measurement is so inexact that ¢ is larger than the value itself, you will not have
significant digits, but only know the order of magnitude. This case is most common when
the quantity in question is expected to be close to zero.

If o is calculated to be much smaller than the smallest digit of your measurement, then
assume that ¢ is equal to one of the smallest digits. For example, if a measurement of a




mass gives exactly 8.45 g ten times, the result should be stated as m = 8.45 + 0.01 g.
Thus you may need to round your uncertainty up to the least significant digit in your
measurement,

Do not confuse round-off errors with uncertainty. With calculators and computers, there
is no reason to round an intermediary result, just because it is found to be uncertain. If
property used, the formulas for propagation uncertainty will take care of the uncertainty
in the final result. So keep your extra digits as you go but make sure to adjust the final
result when you present your measurements for comparison.

Table 1:
Common formulas for propagating uncertainty. These equations can be combined to
form more complicated formulas.

Functional Form Formula Uncertainty formula
Product or Quotient f=xyorf=x/y o = m
Sum or difference f=x+yorf=x-y a:r,«-=,/a,§+cryi
Product raised to powers f = xMmy" g = JmZoZ + n?o}
Constant multipliers f = Kx (K is constant) or = Koy
Logarithmic functions f =log.x Of = Oy

f =logex or = 0.43430,
Exponential functions f=¢€* Oy = Oy

f=10* or = 2.3030;

Practice Questions:

1. A standard household thermometer has one mark for every two °F. What is the
minimum uncertainty that you should assign to the temperature that you read for such a
thermometer? What do you think is the best uncertainty to assign to this reading? Do you
think larger than this? Explain your reasoning.

Standard deviation problem

Trial | Group 1 Group 2

1 9.7 16.4
2 9.9 4.6
3 10.5 2.6
4 10.1 20.3
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2. Find the mean and standard deviation for the two lab groups and report the values for
the measurement including the uncertainty. Do both measurements have the same
precision?

3. What would the value of measurements be if you found the product of group 1 times
group 2 include the correct uncertainty. What would be the result for the quotient and
sum of the two groups of data?
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Appendix 3
NC state standards met in this Curriculum Unit

Competency Goal 1: The learner will develop abilities necessary to do and understand

scientific inquiry.

1.01 Identify questions and problems that can be answered through scientific
investigations

1.02 Design and conduct scientific investigation to answer questions about the physical
world

1.03 Formulate and revise scientific explanations and models using logic and evidence



1.05 Analyze reports of scientific investigations of physical phenomena from an informed
scientifically literate viewpoint including consideration of
* Adequacy of experimental controls
s Replication of findings
¢ Alternative interpretations of the data



