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Background 
 

The primary goal of this curriculum unit is to encourage students in Advanced Functions 

and Modeling (AFM) classes to transition from focusing on strictly skill-based, 

computational exercises to applying what they’ve learned to real-world situations.  My 

goal is to get students to discover “the power of reasoning” (Burger &Starbird, p. 54) and 

not to simply focus on getting to the “right” answer to a problem or exercise.  If they can 

see that math is not always about “plug and chug,” if they can have opinions and make 

conjectures about problem situations and back up those conjectures with evidence, data, 

and computations, then this unit will have achieved its goal. 

 

     I teach in Charlotte Mecklenburg Schools (CMS), an urban school district which 

serves approximately 135,000 students in grades K-12.  The high school in which I teach 

is a large, suburban school located in Cornelius, NC, in the northern part of Mecklenburg 

County.  The school is in its second year of operation, having opened in August 2010, 

and currently serves about 2200 students.  The student body consists of 76.6% Caucasian 

students, 11.1% African-American students, 2.2% Asian students, 7.0% Hispanic 

students, 0.4% American-Indian students and 2.8% Multi-Racial students.  The AFM 

classes are comprised of a mix of juniors and seniors.  The school draws from a 

population of relatively high socioeconomic status, and has a very active and well-funded 

PTSA.  Therefore, resources not normally available through the school system may be 

procured with the assistance of the PTSA.  

 

     The classes I teach are on a 4 x 4 block schedule.  All lessons and activities take place 

during a 90-minute class period.  Due to budget difficulties in our school system, class 

sizes are extremely large this year; two of my classes have over 40 students in them and 

the third “small” class has 26.  This has led me to focus on lessons and activities that 

encourage students to work together in a collaborative environment and not to rely so 

much on teacher-centered instruction and input.  Discovery, collaboration, and 

resourcefulness are my key concepts for the year. 

 

     The lessons and activities in this curriculum unit are designed to be taught in any 

classroom.  Desks can be arranged in a traditional rows and columns layout, or, as I have 

mine, in groups for cooperative learning.  Some of the activities will require students to 

have access to computers connected to the Internet, either in the classroom or in a 

computer lab.  New to my classroom this year is a Promethean board for interactive 



instruction.  I am still developing activities and lessons that take advantage of this new 

technology, but all the lessons and activities in this unit can be taught in a low-tech 

classroom with a blackboard or whiteboard and maybe an overhead projector.  

 

 

Objectives 

 

The North Carolina Essential Standards for Advanced Functions and Modeling have an 

emphasis on modeling and problem solving.  Of the five essential standards, four of them 

use the phrase, “to solve problems,” and two of them use the phrase, “to model and solve 

problems.”  The standards apply to “a diverse array of functions,” including linear, 

polynomial, exponential, trigonometric, power, logarithmic, piecewise-defined, and 

recursively-defined functions.  One essential standard is specifically to “construct models 

of bivariate data to solve problems.”  Other standards focus on analyzing univariate data 

and using both theoretical and experimental probability to model and solve problems. 

 

     To teach to these essential standards, I divide the AFM course into six units taught in 

this order:  functions; exponential and logarithmic functions; sequences and series; 

trigonometry and trigonometric functions; data analysis and statistics; combinatorics and 

probability.  In terms of basic mathematical and computational skills, the first two units 

are a review of topics students should have mastered in previous courses (Algebra 1,  

Geometry, and Algebra 2).  The final four units build on skills learned in earlier courses 

and add new material that most students have never seen before, such as graphs of 

trigonometric functions, normal distribution, and using permutations and combinations in 

probability and odds.  

 

     Because this curriculum unit is about modeling, and because modeling is a recurrent 

theme throughout the entire AFM course, I have structured this unit as an ongoing series 

of lessons and activities that will be integrated into the course over the entire 90-day 

semester.  Rather than providing a one- or two-week single-topic unit to be taught all at 

once, I have developed a curriculum unit that has elements to be woven into the course in 

places that will serve to best enrich the students’ understanding and mastery of three of 

the five major topics.  Due to space and time limitations, I will focus on three of the six 

units:  functions, exponential and logarithmic functions, and sequences and series.  For a 

unit on trigonometry and trigonometric functions, I refer the reader to my 2010 CTI 

curriculum unit entitled, “The Art of Trigonometry.”  Each topic has lessons and 

activities that teach and develop the basic mathematical and computational skills, but 

those skills are not part of this curriculum unit.  This unit provides activities and projects 

that emphasize the modeling aspect of each topic. 

 

 

Strategies 



 

 

Functions 

 

The Functions unit covers polynomial functions.  A few exercises deal with linear 

functions, but the emphasis is on higher-degree quadratic, cubic, and quartic functions.  

In Algebra 2, students learned how to find the solutions of quadratic equations by 

completing the square, factoring, using the Quadratic Formula, and graphing.  With an 

understanding of the idea of zeroes, maxima, and minima, students can use scatter plots, 

graphs and regression analysis to model real-world data with polynomial functions of 

higher degree.  The following are two examples of problems students are expected to be 

able to solve in this unit. 

 

 
 

Polynomial Modeling Example 1 

 

Boyle’s Law states that, at a constant temperature, the pressure of a gas is 

inversely proportional to its volume.  The results of an experiment to 

explore Boyle’s Law are shown. 

 

Volume (liters) 
Pressure 

(atmospheres) 

1.0 3.65 

1.5 2.41 

2.0 1.79 

2.5 1.46 

3.0 1.21 

3.5 1.02 

4.0 0.92 

1. Create a scatter plot of the data. 

2. Determine a power function to model the pressure P as a function of 

volume v. 

3. Based on the information provided in the problem statement, does the 

function you determined make sense? Explain. 

4. Use the model to predict the pressure of the gas if the volume is 3.25 

liters. 

5. Use the model to predict the pressure of the gas if the volume is 6 liters. 



 
 

     Exercises such as the two above are meant to help students to understand the 

difference between a mathematical model of reality and the actual reality.  While most of 

the students will end up with a low-level understanding of this difference, many of them 

will have difficulty applying it.  And having textbook examples with data that they find 

dull, boring, and uninteresting does not serve them well.  I will provide two 

lessons/activities for this unit to help build students’ mastery of modeling with 

polynomial functions.  I am hopeful that using more current, pop-cultural examples will 

help hook them and allow them to then apply what they’ve learned to other, less thrilling 

exercises and problems. 

 

     One lesson (adapted from Chartier, Clayton, Namas and Nobles) will teach students 

how translations and dilations of polynomial functions can be used in the creation of 

scalable fonts.  Many of the AFM students have an affinity for visual arts.  I have actually 

overheard students discussing the use of fonts in signs and reports, so I believe enough of 

them will be interested in scalable fonts that this example will capture their interest. 

Polynomial Modeling Example 2 

 

The numbers of laptops sold each quarter from 2005 to 2007 are shown.  Let 

the first quarter of 2005 be 1, and the fourth quarter of 2007 be 12. 

 

Quarter 
Sales 

(thousands) 

1 423 

2 462 

3 495 

4 634 

5 587 

6 498 

7 798 

8 986 

9 969 

10 891 

11 1130 

12 1347 

 

1. Predict the end behavior of a graph of the data as x approaches infinity. 

2. Use a graphing calculator to graph and model the data.  Is the model a 

good fit? Explain your reasoning. 

3. Describe the end behavior of the graph using limits.  Was your 

prediction accurate? Explain your reasoning. 



 

     A second lesson will demonstrate to students how polynomial functions, specifically 

quadratic functions, are integrated into the currently popular “Angry Birds” game for 

smart phones and computers.  Dr. Tim Chartier, Associate Professor of Mathematics at 

Davidson College, has created a webinar which can be found at 

http://davidson.mediasite.mcnc.org/mcnc/SilverlightPlayer/Default.aspx?peid=0291948b

5d7e495c894e753659fbf5e41d&playFrom=12000.  Through watching this video and 

doing the subsequent classroom activity, students will learn how quadratic functions can 

predict the path of an angry bird as it launches itself toward the pigs upon which it is 

trying to exact revenge. 

 

 

Exponential and Logarithmic Functions 

 

The mathematics covered in this unit includes inverse relations and functions, and the 

inverse relationship between exponential and logarithmic functions.  The modeling in this 

unit focuses on exponential growth and decay and compound interest.  The textbook 

includes exercises dealing mainly with population and investments.  An enrichment 

exercise explains the “rule of 72” as used by many finance professionals.  I believe that 

the financial examples and exercises used in this unit are valuable for all students.  

Financial literacy is an important life skill for everyone. 

 

     The following two exercises are examples of the type students are expected to be able 

to solve in this unit. 

 

http://davidson.mediasite.mcnc.org/mcnc/SilverlightPlayer/Default.aspx?peid=0291948b5d7e495c894e753659fbf5e41d&playFrom=12000
http://davidson.mediasite.mcnc.org/mcnc/SilverlightPlayer/Default.aspx?peid=0291948b5d7e495c894e753659fbf5e41d&playFrom=12000


 
 

Exponential and Logarithmic Modeling Example 1 

 

A student researched the average cost per gallon of gasoline in two 

different years. 

 

Average Cost per Gallon 

of Gasoline 

Year Cost ($) 

1990 1.19 

2007 3.86 

 

1. If the average cost of gasoline increased at an exponential rate, identify 

the rate of increase.  Write an exponential equation to model this 

situation. 

2. Use your model to predict the average cost of a gallon of gasoline in 

a. 2011 

b. 2015 

3. When will the average cost per gallon of gasoline exceed $7? 

4. Why might an exponential model not be an accurate representation of 

this data? 



 
 

     Example 2 above illustrates one area with which students struggle when modeling 

exponential decay.  The idea that the function used to model exponential decay will have 

values that approach zero, but will never equal zero is often difficult for students to 

reconcile with real-life applications.  When talking about population decay, the difference 

between theoretical and actual decay is challenging for students to understand.  I have my 

students do an activity in which they model exponential decay with M&Ms or Skittles 

candies.  Eventually they get to a point in the activity where they have no candies 

remaining – or where the value of the function equals zero.  But the exponential model, 

when graphed, has y=0 as an asymptote, and the function used to model the situation will 

never have a value of zero.  Why will the function never equal zero when in reality the 

number of candies will equal zero? To help students get a better grasp of the concept of 

infinitesimal quantities, I will show students a video clip of Tim Chartier’s infinite rope 

mime sketch.  (http://vimeo.com/20079804).  In this sketch, Dr. Chartier visually 

represents the concept of infinity by performing as a man picking up a rope and trying, to 

no avail, to find the end of the rope.  He keeps pulling and pulling and pulling on it, but 

Exponential and Logarithmic Modeling Example 2 

 

In chemistry class, Brandon learned that, due to differences in atmospheric 

pressure, water boils at lower temperatures at high altitudes than it does at 

sea level.  The table shows the boiling point of water for several different 

elevations above sea level. 

 

Elevation (1000 m) Boiling Point (°C) 

0 100 

1 99.29 

2 98.81 

3 98.43 

4 98.1 

5 97.8 

6 97.53 

7 97.28 

8 97.05 

9 96.83 

10 96.62 

 

1. Use a graphing calculator to create a scatter plot of the data. 

2. Based on the shape of the scatter plot, what type of function can be 

used to model this data? 

3. Write an equation to model the data, and then use the model to predict 

the boiling point of water at 25,000 feet above sea level. 



never finds the end.  Then, through his frustration with his inability to get to the end of 

the rope, he has the bright idea of cutting it to force it to end and just get rid of the darn 

thing.  But he discovers the concept of infinitesimal quantities as he keeps cutting, and 

cutting, and cutting, but never gets to where there’s no rope left – there’s always a piece 

left that he can cut in half.  Although most of my AFM students have a pretty firm 

concept of infinity in terms of ever increasing quantities, they have a harder time 

imagining ever decaying quantities and infinitesimal amounts.  I hope this sketch will 

help them to understand why exponential decay theoretically never goes below zero. 

 

     The other lesson I will teach also uses exponential decay.  I will use the parlor trick of 

being able to pick a name out of a phone book to help students see that a seemingly 

unmanageable amount of information can be culled down rather quickly by cutting it 

down exponentially (adapted from Greenbaum and Chartier.)  In this trick, I will have a 

student select a name from a local phone book and tell them I can find the name they 

picked in 20 guesses or fewer.  By continually dividing the book into halves, I can 

quickly isolate the page, then the half-page, then the quarter-page, etc., until it is a choice 

between two entries and one of those two will be the entry the student selected. 

 

     The math behind this trick is based in the exponential function, .  Figure 1 

shows how the number of available names diminishes to one name if we start with 

1,048,576, or 2
20

 names in the phone book. 

 



 
 

     Students can now understand that by expressing the starting quantity in base 2 (or 

“two to some power”) we can predict exactly how many guesses it will take to pinpoint 

someone’s choice regardless of how many possibilities there are to begin with.  I will 

then extend this example to a theoretical phone book of the entire world and ask students 

to predict how many guesses it would take to find someone’s choice.  Given a current 

estimate of the population of the world of 7 billion people 

(http://www.worldometers.info/world-population/), we can express 7 billion in base 20 

by calculating .  Students will want to use “guess and check” by 

raising two to different powers until they get closest to 7 billion.  I will then tie in 

logarithmic functions to show them that  is the same as 

.  They will use the change of base formula to calculate the 

power as approximately 32.7.  Rounding that number up to 33, the students will learn that 

they can name someone’s choice from a world phone book in 33 or fewer guesses. 

 

Figure 1 

Guess 

Number of 

Names 

Available 

Exponential 

Form 

0 1,048,576 2
20 

1 524,288 2
19 

2 262,144 2
18 

3 131,072 2
17 

4 65,536 2
16 

5 32,768 2
15 

6 16,384 2
14 

7 8,192 2
13 

8 4,096 2
12 

9 2,048 2
11 

10 1,024 2
10 

11 512 2
9 

12 256 2
8 

13 128 2
7 

14 64 2
6 

15 32 2
5 

16 16 2
4 

17 8 2
3 

18 4 2
2 

19 2 2
1 

20 1 2
0 

 

http://www.worldometers.info/world-population/


Sequences and Series 

 

This is the unit in which I have the most difficulty teaching modeling.  The math in this 

unit deals mainly with nth terms and sums of arithmetic and geometric sequences.  We 

touch briefly on the Fibonacci Sequence, and use Pascal’s Triangle for binomial 

expansion.  The examples and exercises in the text often have students use an arithmetic 

sequence to find the seating capacity of an auditorium in which the number of seats in 

each row increases by a constant number from the front to the back of the auditorium.  

And they use geometric sequences to determine how many people may receive a chain 

email message.  In teenage circles, email and instant messaging have been all but 

replaced by texting and by social networks such as Facebook and Twitter.  So it seems 

relatable to students to find examples that use these current technologies rather than the 

relatively outdated technology of email. 

 

     I will use an example of a heavily-promoted movie that, despite all the hype, fails at 

the box office in the opening weekend and effectively falls off the face of the earth until 

it shows up at video rental kiosks six months later.  If I go see the movie on its opening 

day and hate it, how long would it take to spread the word that it’s not worth the $10 

admission price?  What if 200 people see it at the same time I do, and they all hate it as 

well; then how long would it take to spread the word? 

 

     If I post on Facebook, or tweet that I hate the movie and two of my friends share this 

information, then two of each of their friends share it, and then two friends of each of 

those people share it, and so on, how many levels of sharing will it take to spread the 

word to enough people to cause the movie to flop?  What if it’s three people who share 

the information at each level?  What if 20 other people start a thread at the same time I 

do, or 50 other people, or 150 other people?  How many degrees of word of mouth does it 

take to cause a movie to tank?  Can we use a geometric series to model this? 

 

     The simplest geometric model to start with would be a doubling model.  We’ll start 

with one person seeing the movie, hating it, and spreading the word to friends.  And we’ll 

assume that each friend spreads the word to two more friends each time.  The general 

formula for the sum of the first n terms of a geometric series is .  In this 

case,a1 equals one since only one person hates the movie, and r equals 2, since the 

number of people spreading the word doubles each time.  So our explicit formula turns 

out to be , or, completely simplified,  

 

     Using different values for n, we see that even with only one person panning the movie, 

it takes relatively few iterations of spreading the word to do damage to the movie in its 

opening weekend.  It is difficult to find data on numbers of tickets sold for successful 

movies; the more readily available data are about the gross sales in dollars.  But using the 



example of “Harry Potter and the Deathly Hallows: Part II” which had the largest ever 

total gross one-day ticket sales of $91,071,119 on July 15, 2011 (http://www.the-

numbers.com/movies/records/#wideopening), we can estimate that a very successful 

movie will sell at least 5 million tickets nationwide on its opening day.  So how many 

iterations of bad word of mouth will it take to make a potential mega-hit become a flop?  

Well, if only one person pans the movie, we can use our formula, , plug in 

5,000,000 for Sn and then solve for n.  Doing so, we find that it takes about 22 iterations 

to get to 5,000,000 people hearing the movie is bad when only one person publicly pans 

it.  If more people pan the movie, or if the word gets spread at a faster rate, or if the 

reality is some combination of more people and a higher rate, it becomes easy to see how 

quickly a movie can go from potential blockbuster to complete failure in very little time 

due to social networking. 

 

 

Lesson Plans and Classroom Activities 

 

Functions 

 

Lesson 1:  Scalable Fonts 

 

1. Choose a three letter word or your initials. 

2. Create your own simple font by sketching your word or initials on graph paper, 

using only straight lines. 

a. The first letter of your word should have the origin as one of its endpoints. 

b. Make sure to use at least one of each type of line: horizontal or vertical, 

positive slope, negative slope.   

3. Label the coordinates of the endpoints of each of the segments used to create each 

letter. 

4. On a separate piece of paper, write an equation for each segment. 

a. Find the slope using . 

b. Use one of the segment’s endpoints and the slope you just calculated and 

plug into point-slope form [  ] to get the equation of 

the segment. 

c. Repeat these steps for each segment of each letter. 

d. Think about the constraints on each of these equations. 

i. Are you drawing the entire line for each equation, or just a 

segment? 

ii. What determines where to start and where to stop drawing each 

segment? 

iii. Include these constraints in your equations. 

http://www.the-numbers.com/movies/records/#wideopening
http://www.the-numbers.com/movies/records/#wideopening


5. Make sure your list of equations doesn’t specify what actual letters you have 

sketched.  It should just be a list of equations and the x- or y-values to sketch 

them between.  Now exchange equations with a classmate. 

6. On a blank sheet of graph paper, follow your classmate’s equations and 

constraints and see if you can sketch their word. 

7. Now go back to your own original word.  You’re going to perform two dilations 

on your word: 

a. Multiply all the coordinates by some scale factor (I suggest using 2 to 

keep it simple) to expand the letters. 

b. Divide all the coordinates by some scale factor (again, I suggest using 2 to 

keep it simple) to compress the letters. 

8. Using two different colored pencils, sketch the expansion and compression on the 

same set of axes as your original word. 

9. Choose at least 3 of the expanded segments and 3 of the compressed segments 

and write the equations for these segments (using the method from step 4 above.)  

Make sure your choices include one positive slope, one negative slope, and one 

horizontal or vertical line. 

10. Did the equations change when the letters were expanded or compressed?   If so, 

how did they change?  If not, why not? 

 

     Teacher’s example: 

 
  



 Original Points Expanded Contracted 

A 

(0,0) (0,0) (0,0) 

(1,2) (2,4) (0.5,1) 

(2,4) (4,8) (1,2) 

(3,2) (6,4) (1.5,1) 

(4,0) (8,0) (2,0) 

F (5,0) (10,0) (2.5,0) 

(5,2) (10,4) (2.5,1) 

(5,4) (10,8) (2.5,2) 

(7,2) (14,4) (3.5,1) 

(8,4) (16,8) (4,2) 

M (9,0) (18,0) (4.5,0) 

(9,4) (18,8) (4.5,2) 

(11,2) (22,4) (5.5,1) 

(13,0) (26,0) (6.5,0) 

(13,40 (26,8) (6.5,2) 

 

     Equations for A:  

    

    

     Equations for F:  

    

    

     Equations for M:  

    

    

    
 

     Notes to teacher:  After students have completed this activity, you can demonstrate 

how the curved parts of fonts could be modeled with sections of polynomial functions.  

This will lead into the lesson on modeling real-world data with power and polynomial 

functions. 

 

Lesson 2:  Angry Birds 

 

This lesson requires very little preparation, since it has already been created as a webinar.  

Simply play for the class the 10-minute webinar “Algebra 4 Angry Birds” 

(http://davidson.mediasite.mcnc.org/mcnc/SilverlightPlayer/Default.aspx?peid=0291948

b5d7e495c894e753659fbf5e41d&playFrom=12000) created by Dr. Tim Chartier of 

Davidson College. In this webinar, Dr. Chartier has done a wonderful job of illustrating 

how quadratic functions can be used to predict the path of an angry bird launched from 

http://davidson.mediasite.mcnc.org/mcnc/SilverlightPlayer/Default.aspx?peid=0291948b5d7e495c894e753659fbf5e41d&playFrom=12000
http://davidson.mediasite.mcnc.org/mcnc/SilverlightPlayer/Default.aspx?peid=0291948b5d7e495c894e753659fbf5e41d&playFrom=12000


one of three common angles (30°, 45°, and 60°.)  This is an excellent alternative to the 

common quadratic examples using the flight of a rocket or a ball thrown across a field. 

 

     Using the simplified equations derived by Dr. Chartier for the webinar, 

, , and 

, have students predict situations such as: 

1. The best angle to launch to reach a target that is approximately 

a. 7 units away horizontally, and 5 units off the ground. 

b. 9 units away horizontally and 3 units off the ground. 

2. Will the bird hit its target if: 

a. It is launched at 30° and the target is 2.5 units away horizontally and 3.2 

units off the ground? 

b. It is launched at 45° and the target is 3.5 units away horizontally and 3.5 

units off the ground? 

3. What height of target will the bird hit if it is launched 

a. From 60° with the target 5 units away horizontally? 

b. From 30° with the target 5 units away horizontally? 

 

     This lesson can be followed up with a practice worksheet of exercises and word 

problems involving other situations modeled by quadratic functions. 

 

Exponential and Logarithmic Functions 

 

Lesson 3:  Infinite Exponential Decay 

 

This lesson may come right after an activity modeling exponential decay with candy (see 

http://serc.carleton.edu/quantskills/activities/MandMModel.html or do a web search to 

find one of many good examples of such an activity.)  Show the video clip of Dr. 

Chartier’s “Infinite Rope” mime sketch (http://vimeo.com/20079804.)  The purpose of 

this short lesson is simply to open up a class discussion on the concept of infinitesimal 

quantities, and the concept of numbers that get smaller and smaller and smaller but never 

reach or go below zero. 

 

Lesson 4:  Tricks with Exponential Decay 

 

Using a telephone directory from a large city (I use Charlotte, NC) give the book to one 

student and ask them to choose one listing from that book.  Tell the student you will 

guess their choice in 20 guesses or fewer. 

 

     Start by dividing the book approximately in half, holding each half in one of your 

hands.  Then ask the student, “Is your choice in my left hand or my right hand?”  Based 

on their answer, take that section and divide it approximately in half, then ask them again, 

http://serc.carleton.edu/quantskills/activities/MandMModel.html


“Is your choice in my left hand or my right hand?”  For each of their answers, take that 

section and divide it in half, asking the left hand/right had question each time.  Eventually 

you will narrow it down to one page.  Then begin breaking the page in half.  Phone books 

usually have several columns of listings, so first ask the student if their choice is on the 

left half or the right half of the page.  Once you’ve isolated the column, then break the 

column in half by asking if their choice is in the top half or bottom half of the column.  

Keep breaking that down to halves until you have isolated two listings.  Then ask if their 

choice is the first listing or the second listing. 

 

     Now have students research the current population of the world.  Once they have 

found that number, ask them to calculate how many guesses it would take to find 

someone’s choice if there was a phone book of the entire world.  They will need to use 

logarithms to calculate how to express the population in terms of base 2.  Many will want 

to use “guess and check” by raising 2 to various powers until they come up with a 

number that is close to the population number.  Since the number of guesses is a whole 

number, this method is actually ok, but won’t tie in to logarithms.  For example, if the 

population is 4 billion, student will have to solve  or 

. 

 

     This lesson can be followed up with practice in solving problems using exponential 

decay and using logarithms to solve exponential equations. 

 

Sequences and Series 

 

Lesson 5:  How to Make a Movie Fail and the Box Office 

 

Ask the students to think about a movie about which they heard a lot of hype, but by the 

time they decided to go see it, it was already gone from the theaters.  What could cause 

that to happen?  It was supposed to be a big blockbuster, but it ended up “tanking” at the 

theaters.  Could word of mouth make that happen?  How could it possibly happen so 

quickly? 

 

     Once the students have come up with the idea that electronic word of mouth, or social 

networking, could have something to do with it, it is time to get them thinking about it as 

a geometric sequence or series.  One could correctly argue that this scenario could be 

modeled by an exponential function, and there could be an extension exercise in here to 

help students see the connection between geometric sequences and series and exponential 

functions. 

 

     Ask students some leading questions such as: 

1. If I go see the movie on its opening day and hate it, how long would it take to 

spread the word that it’s not worth the $10 admission price? 



2. If I post on Facebook, or tweet that I hate the movie and two of my friends share 

this information, then two of each of their friends share it, and then two friends of 

each of those people share it, and so on, how many levels of sharing will it take to 

spread the word to enough people to cause the movie to flop? 

3. What if 200 people see it at the same time I do, and they all hate it as well; then 

how long would it take to spread the word? 

 

     Next, guide the students to discover the terms to use to model this situation with a 

geometric series.  Have them start with a doubling model, with only one person seeing 

the movie, hating it, and spreading the word to two friends.  Assume that each friend 

spreads the word to two more friends each time. 

 

     Remind students of the general formula for the sum of the first n terms of a geometric 

series: .  Ask more directed questions: 

4. What will we use for, a1?  Why?  (We use one since only one person hates the 

movie). 

5. What will we use for r?  (Two, since the number of people spreading the word 

doubles each time) 

6. Can you write an explicit formula for this sequence?  ( , or, 

completely simplified,  

7. What value of n will give us a sum large enough to do damage to the movie in its 

opening weekend 

 

     Have students research data on numbers of tickets sold for successful movies.  They 

may discover that the more readily available data are about the gross sales in dollars 

rather than the number of tickets sold.  Help them estimate ticket sales using those 

numbers and assuming an average ticket price of $8-10. 

 

     Finally, students will use the formula, , plug in their estimated number of 

ticktes for Sn and then solve for n.  Doing so, they will find how much iteration it may 

take to get to a “critical mass” of people hearing the movie is bad when only one person 

publicly pans it. 
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