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Introduction 

 

Math and Art, friends or enemies. Most people would not put these two words together in 

a sentence, much less try to create a lesson or unit that can be just as exciting to 

experience as Art on its own. 

 

     As an artist and art educator, I enjoy the subjective nature of art, as do many of my 

students. They don’t feel that they have to get an answer right, or listen to someone else’s 

opinions, because art is an expression. It is what they want it to be. However, a negative 

aspect to that is they don’t take it seriously and think of it as a “break” from their normal 

school education. As an educator, I am looking for solutions to stop “breaks” in learning 

from happening. I believe that art is the bridge that can connect other disciplines and 

make learning more meaningful, helping students to better retain the information that 

they have learned outside the art room. My hope is that this concept for learning will help 

fuel their desire to want to learn more in art and in life. 

 

     I know all of us love Math, right? Some of us though, might think of it as 

overwhelming or tedious. Well, I have had those same thoughts; however I do enjoy 

finding solutions, and having a definite answer to my question, which doesn’t always 

happen in the art discipline. Solving problems from an equation, a hypothesis, or a 

personal goal can help build a student’s confidence. Students enjoy seeing their projects 

progress and come to fruition. They also like to solve puzzles. So why should the concept 

of Art and Math together be so puzzling? Art and Math may seem like polar opposites, 

but there are in fact many similarities between them. 

 

     In art, the use of repetition, pattern, unity, and scale parallel the very same principles 

found in mathematics. Artwork can consist of tilings, tessellations, and three-dimensional 

forms of polyhedra in combination with more traditional elements and principles of 

design to create unique forms of art that stimulate both the left and right side of the brain. 

 



     Through this unit, I plan to engage my students through this exploration of math and 

art with hands-on activities, graphic technology programs, and expressive artwork that 

make connections from what they learn in mathematics, to the artwork they study in my 

classroom. 

 

School Information 

 

At our school, Torrence Creek Elementary, we have a large population of high 

performing students. We also have a large amount of students enrolled at our school, 

approximately 1300. Because of the size of our school, I am one of two art teachers here 

who teach Kindergarten through Fifth Grade. For this unit, I want to focus on challenging 

our fifth grade students.  I teach three of the fifth grade classes this year, for 40 minute 

periods, once a week. This unit contains a variety of math related art projects and will 

stretch for a total of 6 weeks and include time in a computer lab.  

 

     As an educator, it is my responsibility to study my students’ abilities and design my 

lessons in such a way that pushes them to develop upon the skill sets that they already 

have. Many of the students at our school are advanced, so this requires that I find ways 

where they can grow while not pushing others too hard, leaving them discouraged and 

falling behind.  I believe the most successful way to teach a child is to get them excited 

about their own potential, so they learn to teach themselves through self discipline. My 

goal is to initiate that spark within each of the students that helps them not only to want to 

learn, but specifically for the purposes of this unit, to find the connections between art in 

my classroom and other disciplines. This will help them to merge their creative and 

analytical critical thinking skills. 

 

Rationale 

 

The objective of this unit is to stimulate the students through the integration of 

mathematics and art, which will help to expand their own learning potential inside and 

outside the classroom. During the beginning activities with manipulatives, students will 

be able to identify various symmetries and properties that make up tilings and 

tessellations, such as reflections, rotations, and glide-reflections. They will review 

transformations of the plane figures through experimentation on the M.C.Escher’s 

website, and various computer java programs. Students will become familiar with 

computer techniques and how to create and represent polygons and their designs. 

Through this process, the students will connect what they have learned in their regular 



classrooms with mathematics. They will be able to recognize and use geometric 

properties of plane figures. They will accurately represent two-dimensional and three-

dimensional figures, predict the transformations of plane figures, test conjectures and 

problem solve with polygons and their characteristics. 

 

     Fifth Graders will also be able to identify and analyze the characteristics artwork done 

by the artist, M.C. Escher, who used a variety of mathematical principles when creating 

his artwork. Students will use the four levels of art criticism; describe, analyze, interpret, 

and judge to understand how Escher used line, color, pattern, and form within his work. 

The critique will focus on the artwork’s relationship to the design principles, emphasis, 

movement, repetition, space, balance, value, and unity. 

 

     Students will discover other artists, specifically sculptors, who use designs with 

polygons in their artwork in the form of polyhedra.  Students will then use computer 

graphics to explore mathematical principles found within polyhedra, and break the forms 

down into their simplest form to better understand how they’re constructed. They will 

analyze their models using Euler’s formula and show symmetries, such as two and three-

fold rotational symmetry, dualities and discuss colorability. Students will be able to 

classify these based on their symmetries and characteristics. 

 

     After studying these concepts, students will use pattern, repetition, and unity when 

creating a group sculpture. Students will learn about the art of Origami, and how to fold 

platonic solids (regular polyhedra) from origami paper. As small groups, students will 

then assemble their constructions together to create a larger semi-regular polyhedral 

sculpture or an abstract sculpture composed of platonic solids. 

 

Background 

 

Tessellations and Tilings   

 

A tiling is a repeated pattern on a plane. It is an arrangement of objects completely 

covering a plane such that any two tiles, either, share a common vertex, intersect along a 

pair of edges, or do not intersect at all. Tiles are polygons, the most common being 

shapes of triangles, squares, and hexagons. There are 17 types of tilings of the planes 

altogether (see Figure 1). Tilings are “regular” if they are created with regular 

polygons.  There are a total of 11 regular tilings called Archimedean tilings, made with at 

least two types of regular polygons.   



      

     

          (Fig. 1)  17 Regular Tilings 

 

     Tilings and tessellations are made up of symmetries. A figure in the plane is symmetric 

if you could pick up a copy of it, perform a rigid motion, and set it back down on the 

original figure so that it exactly matches up again. One of the first things to notice about 

symmetry is that there are several different kinds. One way is to just translate it. Another 

is to rotate it. Yet another is to turn it over. As a consequence, there are different kinds of 

symmetry. There are actually four distinct kinds of symmetry, corresponding to four 

basic ways of moving a tile around in the plane: translations, rotations, reflections, and 

glide reflections as seen in chart below and Figures 3 through 5.      

 

Translation 

 

Reflection 

 

Rotation 

 

Glide Reflection 

 

     A translation is a shape that is simply translated, or slid, across the paper and drawn 

again in another place.   

 

     The translation shows the geometric shape in the same alignment as the original; it 

does not turn or flip. 

 

     A reflection is a shape that has been flipped.  Most commonly flipped directly to the 

left or right (over a "y" axis) or flipped to the top or bottom (over an "x" axis), reflections 

can also be done at an angle.   

 

     If a reflection has been done correctly, you can draw an imaginary line right through 

the middle, and the two parts will be symmetrical "mirror" images. To reflect a shape 

across an axis is to plot a special corresponding point for every point in the original 

shape. 

 

 



     Rotation is spinning the pattern around a point, rotating it. A rotation, or turn, occurs 

when an object is moved in a circular fashion around a central point which does not 

move.   

 

     A good example of a rotation is one "wing" of a pinwheel which turns around the 

center point. Rotations always have a center, and an angle of rotation.  

 

     In glide reflection, reflection and translation are used concurrently much like the 

following piece by Escher, Horseman.  

 

     There is no reflectional symmetry, nor is there rotational symmetry. 

                                                                     

          (Figure 2) Translation               (Figure 3) Glide-Reflection 

 

                                                   

          (Figure 4) Rotation     (Figure 5) Reflection 

 

     The Classification Theorem for Plane Symmetries: Every symmetry of the plane is 

either a composition of a translation followed by a rotation, or it’s a composition of a 

translation followed by a reflection.    

 

     The difference between a tiling and tessellation is that a tessellation is periodic tiling 

and a tiling by itself can be both periodic or aperiodic.   

 

     A regular tessellation is a highly symmetric tiling made up of congruent regular 

polygons. Only three regular tessellations exist: those made up of equilateral triangles, 

squares, or hexagons. A semi-regular tessellation uses a variety of regular polygons; there 

are eight of these. The arrangement of polygons at every vertex point is identical. An 

edge-to-edge tessellation is even less regular: the only requirement is that adjacent tiles 

only share full sides, i.e. no tile shares a partial side with any other tile. Other types of 

tessellations exist, depending on types of figures and types of pattern. There are regular 

versus irregular, periodic versus aperiodic, symmetric versus asymmetric, and fractal 

tessellations, as well as other classifications. 

 

Polyhedra 

 

What is polyhedra?  Simply stated it is a three-dimensional object constructed from 

polygons; mostly squares, triangles, hexagons, pentagons, and/or octagons.  Each of these 



polygons have faces, edges, and vertices.  The most simple polyhedral are platonic 

solids:  tetrahedron (made with 4 triangles), cube (made with 6 squares), octahedron, 

(made with 8 triangles), dodecahedron, (made with 12 pentagons), and icosahedrons 

(made with 20 triangles).  Please see Figure 3 for platonic solid characteristics. 

 

     The platonic solids are “regular”, meaning the arrangement of regular polygons at the 

vertices are all alike and made up of only one type of polygon.  Platonic solids do not 

have to be depicted as “solid”. They can be hollow, skeletal (no faces), or have perforated 

surfaces. The regular polyhedra always have mirror symmetry: they can be divided into 

mirror image halves in many different ways, and they have rotational symmetry:  they 

can be rotated without changing their apparent position. Characteristics of Platonic Solids 

are shown in Figure 6 and 7 below. 

 

Platonic Solids 

Faces 

Number of Sides of each face 

Edges 

Vertices 

Tetrahedron 

4 

3 

6 

4 

Cube 

6 

4 

12 

8 

Octahedron 

8 

3 

12 

6 

Dodecahedron 

12 

5 

30 



20 

Icosahedron 

20 

3 

30 

12 

 

 

 

 

 

(Figure 6) Chart of Platonic Solids        

 

 

(Figure 7)  Platonic Solids 

 

     Every surface of each platonic solid has an Euler characteristic of 2.   This means that 

if you let F=the number of faces, E=the number of edges, and V=the number of vertices, 

then F – E+V=2.  This number is the same when finding the Euler characteristic of the 

Archimedean solids (see Figures 8 and 9). These are made when you take a platonic solid 

and cut the corners or edges, also known as truncating.  The Archimedean solids are 

considered semi-regular because they are made with two or more kinds of regular 

polygons.  There are eleven of these plus two other semi-regular solids.  Four types of 

stellated polyhedra also exist, produced with pentagrams. Polyhedra are found in nature, 

in art, and in the makeup of humans.  One of the first polyhedra buildings was created in 

2500 BC in Egypt, the Great Pyramids of Giza.  In nature, polyhedra are found in crystals 

and minerals, honey combs, and plants.  

 

Archimedean Solids 

Types of Faces 

Number of Faces 

Edges 

Vertices 

Truncated Tetrahedron 

4 triangles and 4 hexagons 

8 

18 

12 



Cuboctahedron 

8 triangles and 6 squares 

14 

24 

12 

Truncated octahedron 

6 squares and 8 hexagons 

14 

36 

24 

Truncated cube 

8 triangles and 6 octagons 

14 

36 

24 

Rhombicuboctahedron 

8 triangles and 18 squares 

26 

48 

24 

Truncated cuboctahedron 

12 squares, 8 hexagons, and 6 octagons 

26 

72 

48 

Snub Cube 

32 triangles, and 6 squares 

38 

60 

24 

Icosidodecahedron 

20 triangles, and 12 pentagons 

32 

60 

30 

Truncated icosahedrons 

12 pentagons and 20 hexagons 



32 

90 

60 

Truncated dodecahedron 

20 triangles, 12 decagons (ten-sided polygon) 

32 

90 

60 

Rhombicosidodecahedron 

20 triangles, 30 squares,  and 12 pentagons 

62 

120 

60 

Truncated icosidodecahedron 

30 squares, 20 hexagons, and 12 decagons 

62 

180 

120 

Snub dodecahedron 

80 triangles and 12 pentagons 

92 

150 

60 

 

(Figure 8) Chart of Archimedean Solids  

 

 

 

 

(Figure 9) Archimedean Solids 

 

Rotational Symmetry 

An object has rotational symmetry when you can rotate it through a certain angle and it 

still has the same appearance. 

The figures below have rotational symmetry: 

    (a.)           (b.)  /      (c.)|______   (d.)            

    =====               /\          |    |        /___         

                    /  \         |    |      \/  \      



          =====     __/____\      __|____|      _\_ /\     

                            \            |         /           

                                                                   

     In Figure a., the parts are related by a rotation around the center by 180       degrees. 

The figure looks the same twice in a 360-degree rotation. It has two-fold symmetry.  In 

Figure b., it looks the same three times during a 360-degree rotation and is said to have 

three-fold symmetry.  In Figure c., it has four-fold symmetry and Figure d. has six-fold 

symmetry.  

Duality 

For every polyhedron there exists a dual polyhedron. Starting with any regular 

polyhedron, the dual can be constructed in the following manner: (1) Place a point in the 

center of each face of the original polyhedron; (2) Connect each new point with the new 

points of its neighboring faces; (3) Erase the original polyhedron.  

    

     For example, starting with a cube, you create six points in the centers of the six faces, 

connect each new point to its four neighbors, create 12 edges, and erase the cube to find 

the result is an octahedron, consisting of eight triangular faces. So the dual of the cube is 

the octahedron as shown in Figure 10. 

 

        (Figure 10. Dual of a cube)                          (Figure 11.  Dual of an icosahedron) 

     This is an operation "of order 2" meaning that taking the dual of the dual of x gives 

back the original x. For example, take the dual of the octahedron and see that it is a cube. 

The six 4-sided faces of the cube transform into the six corners of the octahedron, with 4 

faces meeting at each. The eight 3-sided faces of the octahedron transform into the eight 

corners of the cube with 3 faces meeting at each. Also observe that the total number of 

edges remains unchanged, as each original edge crosses exactly one new edge. The cube 

and octahedron each have twelve edges.  The dual of the icosahedron is the dodecahedron 

and vice versa as shown in Figure 11. The twenty 3-sided faces and twelve 5-way corners 

of the icosahedron correspond to the twenty 3-way corners and twelve 5-sided faces of 

the dodecahedron. Each has thirty edges. The dual to the tetrahedron is another 

tetrahedron facing in the opposite directions. All the above polyhedra are regular 

polyhedra, which have the special property that their duals are also regular polyhedra. 

They also all have the same axes of symmetry. However, when you take the duals of the 

Archimedean solids, you get a new class of solids called Archimedean duals.  

 

Origami:  Folding Art with Math  

 



Many teachers have developed hands-on lessons that use origami to make math come to 

life for their students. Topics taught in this way range across the entire curriculum: 

problem solving; precise use of mathematical terminology; ratios, fractions, and percents; 

angles; area and volume; congruence; tessellations; combinatorics; properties of parallel 

lines; products and factors; conic sections; Euler's formula; logic; and proofs. Origami 

also abounds with accessible open problems that give students a chance to contribute 

original ideas. 

 

     For this unit, we will only focus on Modular origami. Modular origami, or unit 

origami, is a paperfolding technique which uses multiple sheets of paper to create a larger 

and more complex structure than would be possible using single-piece origami 

techniques. Each individual sheet of paper is folded into a module, or unit, and then 

modules are assembled into an integrated flat shape or three-dimensional structure by 

inserting flaps into pockets created by the folding process. These insertions create tension 

or friction that holds the model together. 

 (Figure 12) Modular origami made up of Sonobe units            

 

     Modular origami, as seen in Figure 12 above, can be classified as a sub-set of multi-

piece origami, since the rule of restriction to one sheet of paper is abandoned. However, 

all the other rules of origami still apply, so the use of glue, thread, or any other fastening 

that is not a part of the sheet of paper is not generally acceptable in modular origami. The 

additional restrictions that distinguish modular origami from other forms of multi-piece 

origami are using many identical copies of any folded unit, and linking them together in a 

symmetrical or repeating fashion to complete the model.  

     

  (Figure 13) Example of Kusudama 

 

Modular origami forms may be flat or three-dimensional. Flat forms are usually polygons 

(sometimes known as coasters), stars, rotors, and rings. Three-dimensional forms tend to 

be regular polyhedra or tessellations of simple polyhedra. 

 

     The first historical evidence for a modular origami design comes from a Japanese 

book by Hayato Ohoka published in 1734 called Ranma Zushiki. It contains a print that 

shows a group of traditional origami models, one of which is a modular cube. The cube is 

pictured twice (from slightly different angles) and is a tamatebako, or a 'magic treasure 

chest'. 

 



     Most traditional designs are however single-piece and the possibilities inherent in the 

modular origami idea were not explored further until the 1960s when the technique was 

re-invented by Robert Neale in the USA and later by Mitsonobu Sonobe in Japan. Since 

then the modular origami technique has been popularized and developed extensively, and 

now there have been thousands of designs developed in this repertoire. 

 

     There are several other traditional Japanese modular origami designs, including balls 

of folded paper flowers known as kusudama, or medicine balls shown in Figure 13 above. 

These designs are not integrated and are commonly strung together with thread. The term 

kusudama is sometimes, rather inaccurately, used to describe any three-dimensional 

modular origami structure resembling a ball. 

 

Connections between Tessellations and 3-D Polyhedra Forms  

 

Surface Design on Solids 

 

On the surface of a 3-d object, repetitions of a design (a tessellation) can be realized with 

only a finite number of figures.  The solid’s pattern has no beginning or end.  On the 

surface of a solid, the centers of rotation of the flat design become the centers of rotation 

of the solid.  In Figure 14 below, you can see an example of a surface design on a 

tetrahedron. 

 

     A rotation of the tetrahedron on an axis is called three-fold rotational symmetry 

(piercing through the top vertex with an axis).  The tetrahedron also has two-fold 

rotational symmetry when the axis pierces the midpoints of two nonadjacent edges. 

 

     In an octahedron design, each equilateral triangle containing interlocking halves of 

three different motifs make up its face.  It needed 12 motifs (4 of each kind). 

Four colors are sufficient to color a map of any plane design, but aesthetically it is more 

pleasing if they emphasize the symmetry of the design.   

 

(Figure 14)  Surface design on a Tetrahedron 

      

     When a pattern is folded to form a solid, different portions of the design are brought 

together.  Most of the time, it causes the adjacent designs on the solid to have the same 

color.  In order for some of these designs to work, a forced rearrangement of color had to 

be applied to the surface. 



     Each patterned solid can be colored evenly, meaning that each different color is used 

the same number of times. 

 

Classroom Strategies 

 

Activity 1 

 

The unit will begin with student experimentation and exploration. This act of 

constructing and experimenting raises questions for them about the relationship between 

math and art, and is something tangible for them to get excited and intrigued about. The 

students will use manipulatives, such as Tangrams or Geosnaps, or other similar models 

to create tilings and tessellations.  They will take turns experimenting and constructing 

using these and various internet websites.  Please see a list of websites in the appendix for 

your students to search. Students will visit these sites and use polygons to create their 

designs.  They will choose one to print, then describe and analyze their design and try to 

rationalize why they “work”.   

 

 • What polygons are included in your design? 

 • Are they regular or irregular?  How do you know? 

 • How many colors make up your design?  How else could you color it? 

 • Why do you think your design works?  What would happen if you 

changed one of the polygons? 

 • Draw an example of a design that does not cover the plane, one that 

doesn’t work. 

 

Activity 2 

 

Students will create constructions of polyhedra on their own with simple 

materials. Students will be provided with a list of websites such as the National Library 

of Virtual Manipulatives and computer programs like Geometria and JavaGami. The fifth 

grade students will be given a worksheet to document their findings about the models.  

 

1)  How would you describe the characteristics of a polyhedron? 

            2)  What are some common polyhedrons?  

3)  What is the relationship between the number of vertices, faces, and edges of  

      any face of a polyhedron? 

4)  How would you describe the faces of a tetrahedron? Hexahedron?   



      Octahedron? 

5)  How many faces share one edge in each of your polyhedrons? 

6)  What seems to be the least number of edges that meet at each vertex? 

7) Which of the polyhedrons that you have built represent Platonic Solids? How   

     do you know? 

 • How are the Platonic Solids different from the other polyhedrons? How 

are  

      they alike? 

9)  Are there any similarities between your findings with tilings and tessellations  

      and your findings with polyhedra? 

 

     I will then review the definition of a polyhedron, and check for understanding of their 

properties. The class will share examples of their findings and connections between 

polyhedra and the real-world based on their experience and knowledge. I will also share 

information about Euler’s formula and its how it relates to the polyhedra. Students will 

then have time to apply Euler’s formula to several problems and discover for themselves 

how it works. The relationship among the faces (F), vertices (V), and edges (E) for a 

convex polyhedron, for example platonic solids and Archimedean solids, can be 

expressed as F –E+V=2.  

 

Activity 3 

 

During the following art class, the students will then be shown examples of various 

artworks that consist of tessellations and polyhedra. The class will be divided into groups 

and participate in discussions and critiques of these artworks to better comprehend their 

purpose and meaning. The class will discuss the symmetries found in the artworks of M. 

C. Escher and George Hart, as well as others, and critique them based on the four levels 

of art criticism as mentioned earlier.   

 

Description:  

 • What kinds of things do you see? 

 • What words would you use to describe this work?  

 • How would you describe the lines in this work?  The shapes?  The colors?  

What is its subject matter? 

 • How would you describe this work to a person who could not see it?  

 • What does this work remind you of?  

 • What things do you recognize? What things seem new to you?  



 • What interests you most about this work of art?  

 • What tools, materials, or processes did the art maker use? 

Analyze it: 

 • What elements did the maker choose and how did the maker organize the 

elements?  

 • How is the work deal with space?   

 • Did the artist choose a color scheme?  If so what type? What color is used 

the most in this painting?  

 • What do you think is the most important part of this work?  

 • How do you think the artist made this work?  

 • What questions would you ask the artist about this work, if he were here?  

Interpret it: 

 • What title would you give to this painting? What made you decide on that 

title?  

 • What other titles could we give it?  

 • What do you think is going on in this work? How did you arrive at that 

idea?  

 • What do you think this work is about? How did you come up that idea?  

 • Pretend you are inside this work. What does it feel like?  

 • Why do you suppose the artist made this work? What makes you think 

that?  

Evaluate it.  

 • What do you think is good about this work? What is not so good?  

 • Do you think the person who created this do a good or bad job? What 

makes you think so?  

 • Why do you think other people should see this work of art?  

 • What do you think other people would say about this work? Why do you 

think that?  

 • What would you do with this work if you owned it?  

 • What do you think is worth remembering about this work?  

 

     We will end this critique with a presentation of the artworks.  A representative will be 

an “Art Dealer” representing the artist, and I will be the “Art Curator” for the “Class 

Gallery”.  The art dealer will provide a detailed synopsis of the work to give the curator 

enough information to determine if the work deserves placement in the gallery.   

 

 



 

 

 

Activity 4 

 

Printed Translation Tessellation: 

 

Materials needed: 

12 x 12 white paper 

 3 x 3 cardboard or chipboard piece 

Masking tape 

Scissors 

Tempura paints (variety of colors) 

Trays for paint 

Brushes 

(newspaper to protect tables) optional 

 

Procedure:  

 

     Students will create a design using be tested on their knowledge of tessellation 

symmetry when creating a simple printed tessellation using cardboard and paint on paper. 

Students will first fold their 12 x 12 paper 4 times so they create a 3 x3 grid across the 

paper. They will create a tessellating shape with cardboard by cutting the bottom and 

sliding it up to the top and taping it down.  Then they will cut out a shape from the left 

side and slide it to the right and tape down.  (You want to make sure whatever amount is 

taken away that it is replaced on the opposite side)  Students will then use that shape as a 

stamp.  They will choose one color to begin painting with and will use a brush to paint 

the color on top of the cardboard shape.  They will line the shape up to the bottom right 

corner of the first square and print it.  They will skip every other one to make a checker 

board pattern with the color.  They will repaint as needed.  Students will repeat this 

process with their chosen second color.  (They will wipe off any of the first color and 

print in-between the areas they skipped).  Once dry, students can use sharpie markers to 

add details into their design. They can make their shapes look like a recognizable object 

or they can add abstract designs onto their design.  

 

Activity 5 

 



Fifth graders, at the next art period meeting, will complete a warm-up activity where they 

will color in Escher’s fish cube design using the following rules.  

 

(1)  Each fish is one color.  

      (2)  No two adjacent fish have the same color.  

(3)  Exactly four colors are used.  

(4)  Each color is used to color exactly three of the twelve fish. 

(it is possible to “three-color” the design) 

 

     Taking what they have learned, we will discuss colorability of a platonic solid. 

Students will then construct a platonic solid from its net (printed from the computer) and 

will create a simple design that emphasizes the construction and relationship of the faces 

and assemble it together. I will be monitoring their work and asking questions to check 

and clarify their understanding of the investigations.  Students will use problem solving 

skills when finding answers to these questions. 

  

(Figure 15) Example of a net 

 

1) How few colors are required to color the map of my design?   

2) How many different colors or color combinations can I use?  

 

 

Activity 6 

 

Modular Origami: 

 

For this project you will need lots of origami paper (several 100pks of a variety of colors) 

and glue for assemblage. Students will learn how to fold a platonic solid with Origami 

paper using examples from modular origami instructions. (You can do more complicated 

solids for older students). They will then assemble them together with a group to create a 

large polyhedra sculpture. It can be a semi-regular polyhedra or an abstraction made up 

of polyhedra forms. You can find many instructions online or in books.  I used “Unit 

Polyhedron Origami” by Tomoko Fuse for my square and equilateral triangle units. 

 

For my classroom, I am assigning groups of four, either square or triangle units to make.  

At each table I will have the step-by-step instructions written, along with an origami 

paper folded showing that step done.  This helps out a lot when you have a large class 

and they need help to folding the paper.  Students in that group will create as many units 



and joints they need to create their sculpture.  For example, if they are creating a 

sculpture with regular tetrahedron, they will need 4 triangular flat units and 6 joints for 

each. I have them store their pieces in shoeboxes as they work.  They can also take them 

home and create some as well.  Once they fold the first couple, they become experts.  

Once they fold several solids, they can begin brainstorming ideas how they can connect 

them together for other polyhedra forms or abstract sculptures. 

 

Activity 7  

 

For the last activity, students will review what they’ve learned about symmetries and 

polyhedra and will draw a diagram of their final sculpture. They may show a single 

polyhedral component and its dual or the entire sculpture’s dual.  They will explain its 

characteristics and symmetries, particularly rotational symmetries.  They will also reflect 

upon their process, individual work, and they will analyze their group’s work based on 

the four levels of art criticism. Each student’s work and process will be assessed and then 

displayed in the hallways. 

 

Resources 

 

Barnette, David. Map Coloring Polyhedra and the Four Color Problem (Dolciani 

Mathematical Expositions). Unknown: Mathematical Assn Of Amer, 1984. 

 This book is a good resource to explain colorability of polyhedra and other maps. 

Escher, M. C., and John E. Brigham. M.C. Escher: the graphic work. Berlin: Taco 

Verlagsgesellschaft und Agentur mbH, 1989.  This resource contains several visuals and 

coordinating information for Escher’s work. 

Farmer, David W.. Groups and Symmetry: A Guide to Discovering Mathematics 

(Mathematical World, Vol. 5). Providence: American Mathematical Society, 1995.  This 

book was used as a resource for explaining symmetries within wallpaper patterns. 

Fuse, Tomoko. Unit polyhedoron origami . Tokyo, Japan: Japan Publications ;, 2006.  

This book was used for instructions of modular origami folds and forms. 

Hilton, Peter and Jean Pederson. Build your own Polyhedra.  Addison-Wesley Publishing  

Company, 1988.  This resource has various instructions and example of polyhedral 

forms.  It shows how to construct a polyhedra from it’s net. 

Holden, Alan. Shapes, Space, and Symmetry. New Ed ed. New York: Dover Publications, 

1991.  This book explains more in depth the characteristics of platonic solids, 

Archimedean solids, and various other polyhedra.  It has great visuals and explains 

symmetries of the three-dimensional forms. 



 

Hull, Thomas. Project Origami: Activities for Exploring Mathematics. Natick: A K 

Peters, Ltd., 2006. This resource shows various origami and mathematical connections.  

The book has examples of folding equilateral triangles and several polyhedral forms. 

Kalajdzievski, Sasho. Math and Art: An Introduction to Visual Mathematics. 1 ed. Boca 

Raton: Chapman & Hall/Crc, 2008.  This resource was used for mathematical and visual 

information concerning tilings, tessellations, and polyhedra.   

Schattscheider, Doris. M.C. Escher Kaleidocycles. Rohnert Park: Pomegranate Artbooks, 

1977.  This is a great resource for examples of Escher’s work, explanations, and actual 

paper models of his designs on platonic solids and other forms. 

Senechal, Marjorie. Shaping Space: A Polyhedral Approach (Design Science Collection). 

Basel, Switzerland: Birkhauser, 1988.  This resource shows examples of polyhedra. 

Singer, David A.. Geometry: Plane and Fancy (Undergraduate Texts in Mathematics). 1 

ed. New York: Springer, 1998.  This resource shows the mathematics behind tiling the 

sphere with regular and semi-regular polyhedra. 

 

Web Resources 

 

"Archimedean Solid -- from Wolfram MathWorld." Wolfram MathWorld: The Web's 

Most Extensive Mathematics Resource. 

http://mathworld.wolfram.com/ArchimedeanSolid.html (accessed November 29, 2010).  

Image of Archimedean Solids used in Figure 9 of unit. 

 

"BBC - KS3 Bitesize: Maths - 3D shapes - Nets." BBC - Homepage. 

http://www.bbc.co.uk/schools/ks3bitesize/maths/shape_space/3d_shapes/revise3.shtml 

(accessed November 29, 2010).  Image of a net of a cube used in Figure 15 of unit. 

 

"Duality." George W. Hart --- Index. http://www.georgehart.com/virtual-

polyhedra/duality.html (accessed November 29, 2010).  Images of duals of a cube and 

icosahedron used in Figure 10 and 11 of unit. 

 

"Escher Gallery Thumbnails 3." Tessellations - Escher and how to make your own. 

http://www.tessellations.org/eschergallery3thumbs.htm (accessed November 29, 2010). 

Images of Escher tessellations used in Figures 2 through 5 of unit. 

 

"Platonic Solids." The Golden Proportion, Beauty, and Dental Aesthetics. 

http://www.goldenmeangauge.co.uk/platonic.htm (accessed November 29, 2010). 

Image of Platonic Solids used in Figure 7 of unit. 



 

Schattschneider, Doris, Wallace Walker, similarly, with myself, here shown with the girls 

of Human Figures, and No.1.. "Polyhedra - David Bailey's World of Escher-like 

Tessellations." David Bailey's World of Escher-like Tessellations. http://www.tess-

elation.co.uk/polyhedra (accessed November 29, 2010).  Image of a surface design on a 

tetrahedron used in Figure 14 of unit. 

 

"Tilings arranged by symmetry group." Southern Polytechnic State University. 

http://www.spsu.edu/math/tile/symm/types/index.htm (accessed November 29, 2010). 

Image of regular tilings used in Figure 1 of unit. 

 

"Wikipedia:Portal:Origami - Global Warming Art." Global Warming Art. 

http://new.globalwarmingart.com/wiki/wikipedia:Portal:Origami (accessed November 29, 

2010).  Images of Modular Origami used in Figures 12 and 13. 


