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Rationale 

 

The Golden Ratio is a fascinating topic. It is found abundantly in nature and wondrously 

in the design and makeup of the human body. It has been used for centuries in the 

construction of architectural masterpieces and by the great artists, who, being able to see 

its beauty, used it in their designs and compositions. The Golden Ratio is everywhere; 

mathematics is all around us. 

 

     For many of my students math is perceived as a dry subject; lifeless and, as some of 

my students would say, pointless. “Why do we need this?” “When am I ever going to use 

this in life?” These are just a couple of the questions that we as math teachers are 

combated with in the classroom. The Golden Ratio, in its prolific abundance in the world 

in which we all inhabit, is a mathematical concept that has the ability to transcend the 

barrage of negativity we often receive from our students. The Golden Ratio is a topic that 

is broad and deep. There are a diverse number of directions, paths and tangents to which 

the study of this beautiful concept could take us. It will provide a means to engage 

students in the world in which they live, but also, hopefully, spark a mathematical interest 

in those students we find hardest to reach. 

 

     Luca Pacioli is quoted as saying, “Without mathematics there is no art.” 
[1]

 

Throughout this unit we will investigate the math that defines beauty. We will look at the 

use of the Golden Ratio in ancient, classical, and modern architecture, and in artwork and 

photography. Finally, we will discover the Golden Ratio as it appears in the human body. 

Dean Schlicter said, "Go down deep enough into anything and you will find 

mathematics." 
[2] 

It is my desire to inspire my students to dig down deep enough to find 

the joy and beauty of math in everything. 

 

Objective 

 

I teach in a middle school with a population of approximately 1400 students. The school 

is located just outside of Charlotte, North Carolina. It is part of the Charlotte-



Mecklenburg school district. My school is part of the Northeast Learning Community. 

The school is in an affluent area and populated mostly by students whose parents are 

well-educated and have high-paying jobs. Our community is also growing rapidly, with 

many newcomers moving from Northern states such as New York, Michigan, and Ohio. 

While the majority of our student population is white (78%), we have a growing number 

of minority groups. The makeup of the school’s minorities is as follows: 13% African 

American, 7% Hispanic, and 2% Asian.
 [3]

 As stated above, our school is located in an 

affluent community; even so, 25% of our students receive free or reduced lunch.Six 

percent of our population is limited in English proficiency. Many of our LEP students 

come from countries like Mexico, Brazil, Guatemala, Honduras, Germany, and Sweden. 

Seven percent of our students are identified as having some type of learning disability 

and receive services from our EC department.
 [4]

 

 

     Middle school math is broken into two levels at my school. Standard Plus classes 

contain students who may be well-below grade level, below grade level, or at grade level. 

Honors classes contain students who are at, or above grade level. Standard Plus classes 

teach on grade level objectives. Honors classes teach objectives that are a year in 

advance, whilst maintaining objectives for the students’ current grade level. In eighth 

grade, that means that Standard Plus classes learn objectives from the 8
th

 grade North 

Carolina Standard Course of Study (NCSCOS), and Honors classes take Algebra 1 

(traditionally a ninth grade course) receiving high school credit upon completion of the 

End of Course test at the end of the year. Standard Plus classes tend to have more 

diversity of race and socio-economic status than Honors classes. Students in Honors 

classes are more likely to be self-motivated. Standard Plus classes, because of their innate 

diversity, allow for a greater range of learning. 

 

     This unit is designed specifically for middle school students. I have included 

extensions that I plan to use with my eighth grade Algebra students. Students will be 

exposed to a range of architecture, artwork and photography that incorporates the Golden 

Ratio in its design. They will be asked to construct Golden Rectangles and Spirals. 

Through specific artwork (and photographs) students will see that the human body also 

has inherent Golden Ratios. This will be explored through a measurement activity, where 

students are allowed to discover Golden Ratios in their own bodies. By the completion of 

this unit students will have learned about the history of the Golden Ratio, constructed a 

Golden Rectangle, discovered evidence of its use in architectural structures and paintings, 

and compared the ratios of their body parts to the Golden Ratio. 

 



Background Information 

 

History 

 

Phidias, a Greek sculptor c. 490 – 439 BC, used the ratio in the design of many of his 

sculptures for the Parthenon. Later Plato, a Greek philosopher, alluded to the proportional 

relationship in his work Timaeus.
 [5] 

However, it was in Euclid’s Elements that the 

definition of the Golden Ratio was first written.
 [6] 

Euclid explains that "A straight line is 

said to have been cut in extreme and mean ratio when, as the whole line is to the greater 

segment, so is the greater to the less.
 [7] 

He found that this ratio was an irrational number. 

 

     Leonardo Fibonacci (c. 1175-1250 AD), wrote about a series of numbers in his book 

Liber Abaci. The series: 1, 1, 2, 3, 5, 8, 13…, continues to increase by adding the 

previous two numbers in the series. 
[8] 

If we let F stand for a Fibonacci number and n 

stand for the number of the term in the sequence, then Fn = Fn– 1+Fn– 2. 
[9] 

These numbers 

appear repeatedly in nature. Many types of flowers have a Fibonacci number of petals. 

“For example, an iris has 3 petals, a primrose 5, a delphinium 8, ragwort 13, an aster 21, 

daisies 13, 21, or 34, and Michaelmas daisies 55 or 89 petals.” Sunflowers also have 

spirals (clockwise and counterclockwise) at their centers that are Fibonacci numbers: “21 

or 34 clockwise and 34 or 55 counterclockwise, respectively.” Pine cones and pineapples 

also have spirals made of Fibonacci numbers.
 [10] 

The numbers in Fibonacci’s sequence, 

when taken in pairs of ratios of consecutive terms, approach that of the Golden Ratio, 

which is 1.618…
 [11]

          

            Figure 1: Sunflower, from M. Bourne,    

           "The Math Behind the Beauty,"   

               

http://www.intmath.com/Numbers/mathOfBeauty.php      

               (accessed October 4, 2010).  

     The “extreme and mean ratio,” as it was called, was not referred to as “golden” until 

the early 16
th

 century AD. In his book, La Divine Proportione (“The Divine 

Proportion”), Luca Pacioli wrote an in-depth study of the Golden Ratio.
 [12]

 He wrote, 

“Like god, the Divine Proportion is always similar to itself.” 
[13]

 Leonardo Da Vinci 

contributed several drawings to La Divine Proportione and made reference to the 

“section aurea” (Latin for “golden section”).
 [14] 

There was a renewed interest in the 

“Divine Proportion” during the Renaissance amongst artists, architects, scientists, and 

mystics. The idea that the use of the Golden Ratio in art and architecture was 

aesthetically pleasing was widely established during this time.
 [15]

 



 

     In 1597, Michael Maestlin, a German professor, in a letter to his former student, 

Johannes Kepler, wrote that the inverse of the golden ratio is “about 0.6180340.” 
[16] 

Kepler went on to prove that the Golden Ratio is the limit of the ratio of consecutive 

Fibonacci Numbers. 
[17]

 He is also quoted as saying, “Geometry has two great treasures: 

one is the Theorem of Pythagoras; the other, the division of a line into extreme and mean 

ratio. The first we may compare to a measure of gold; the second to a precious jewel.” 
[18]

 

 

     In the twentieth century, American mathematician, Mark Barr, began using the Greek 

letter Φ or φ (phi, after the Greek sculptor, Phidias) to represent the Golden Ratio, which 

by this time was also called the Golden Mean, the Golden Section, the Golden 

Proportion, and the Divine Proportion.
 [19] 

In mathematical circles the Greek letter τ (tau, 

from the ancient Greek root meaning “cut”) is also used to refer to the Golden Ratio. 
[20]

 

 

     More recently, the Golden Ratio has been instrumental in the discovery of a five-fold 

symmetry by English mathematician, Roger Penrose, in 1974. The tiles he used to 

aperiodically tile a plane were formed from pentagons, which are closely linked to 

Golden Ratios. The patterns of Penrose tilings were also found in quasi-crystals in the 

1980’s.
 [21]

 

   

Figure 2: Examples of Penrose tilings, from Toni Beardon, "nrich.maths.org :: 

Mathematics Enrichment :: Golden Mathematics."  

http://nrich.maths.org/public/viewer.php?obj_id=2787&part=index&nomenu=1 

(accessed November 5, 2010). 

 

 

Mathematically Speaking 

 

Suppose we have a line segment . The point C on the line  divides the segment into a 

larger part and a smaller part. If the ratio of the length of the whole  to the length of the 

longer segment  is proportional to the ratio of the length of the longer segment  to the 

shorter segment , then this point is regarded as the golden cut and the ratios formed are 

referred to as the Golden Ratio. 

 

Figure 3: from Mario Livio, "The golden ratio and aesthetics | 

plus.maths.org." http://plus.maths.org/issue22/features/golden/ (accessed 

November 7, 2010). 



      =    

If we set the length  = x, and let the length of the longer segment  = 1, then the length of 

the shorter segment  must equal x - 1. 

      =  

We cross-multiply to solve the proportion:  

x
2
– x = 1 

We set the equation equal to zero and solve the equation using the quadratic formula: 

x
2
 - x – 1 = 0 

x =  

x =  

The negative solution is extraneous since we are dealing with length and a negative 

length would not make sense. Therefore the ratio is equal to the irrational number 

1.618… and is most commonly denoted as φ. 
[22]

 

 

     There are many interesting findings about the irrational number phi (φ). One of which 

is the Golden Ratio conjugate. 
[23] 

If we find the reciprocal of φ, we end up with 0.618… 

(Φ). 

     Φ = = 0.618… 

           Φ = φ -1 = 0.618… 

Since both these equations are equivalent, we can set 

 = φ – 1      

The inverse of this must be   = Φ + 1 which equals 1.618… (φ)     

     If we raise φ to consecutive powers we see a familiar pattern start to emerge. 
[24]

 

 φ = 1.618… 

 φ
2
 = 2.618… or 1 + φ  

 φ
3
 = φ∙φ

2
 = φ(1 + φ) = φ + φ

2
 = φ + 1 + φ      = 1 + 

2φ 

 φ
4
 = φ∙φ

3
 = φ(1 + 2φ) = φ + 2φ

2
 = φ + 2(1 + φ)    

 = φ + 2 + 2φ       = 2 + 3φ 

 φ
5
 = φ∙φ

4
 = φ(2 + 3φ) = 2φ + 3φ

2
 = 2φ + 3(1 + φ)                            

= 2φ + 3 + 3φ       = 3 + 5φ 

 φ
6
 = φ∙φ

5
 = φ(3 + 5φ) = 3φ + 5φ

2
 = 3φ + 5(1 + φ)                            

= 3φ + 5 + 5φ       = 5 + 8φ 

By now we should see that the solution is following the Fibonacci numbers. The 

following formula represents this: 

 φ
n
= Fn – 1 + Fnφ  

      



In the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…) the ratios of the 

larger to the smaller of consecutive numbers in the series approach the Golden Ratio. 
[25]

 

 1/1 = 1    2/1 = 2    3/2 = 1.5 

 5/3 = 1.   8/5 = 1.6   13/8 = 1.625 

 21/13 =   34/21 = 1.  55/34 = 1.6176…  89/55 

=1.6   144/89 = 1.61977…  233/144 = 1.6180 

Johannes Kepler proved that the golden ratio is the limit of these ratios found in the 

Fibonacci sequence. He found that alternately each successive ratio would be higher or 

lower that the Golden Ratio, but as n increase, the ratios approach φ. 
[26]

 

      = φ 

  

Constructions 

 

Constructing the Golden Cut
 [27]

 

 

Step 1: Begin with a line l and a point P above the line. With P as the center, draw a 

circle large enough to intersect the line at two points A and F. Find the midpoint   by 

drawing two intersecting circles of equal radii centered on points A and F. Connect the 

points of intersection of the circles with a line. We will call the midpoint B. 

 

     Figure 4: Finding midpoint of  , from "Constructions              

for the Golden Ratio," www.maths.surrey.ac.uk/hosted-

sites/R.Knott/Fibonacci/phi2DGeomTrig.html#hof2003 (accessed 

November 29, 2010). 

Step 2: Find the midpoint of segment  by drawing two intersecting circles of equal radii 

centered on points A and B. Connect the points of intersection with a line. This point will 

be the midpoint of AB. We will call it M.        

            Figure 

5: Midpoint M, from "Constructions for the                   Golden Ratio," 

www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/phi2DGeomTrig.html#hof2003  

            (accessed November 29, 2010).   

   

          

Step 3: Draw a circle with radius  centered at B. The intersection of this circle with the 

perpendicular at B we will name point D. = . 

    Figure 6: Finding D, from "Constructions for the               

Golden Ratio," www.maths.surrey.ac.uk/hosted-



sites/R.Knott/Fibonacci/phi2DGeomTrig.html#hof2003 

(accessed November 29, 2010). 

 

Step 4: Draw line segment. Draw a circle with radius , centered at D. The intersection of 

this circle with  we will call point E. Draw another circle with radius , centered at A. The 

intersection of this circle with  is the Golden Cut C. 

                

Figure 7: The final step, from "Constructions for the       

Golden Ratio," www.maths.surrey.ac.uk/hosted-

sites/R.Knott/Fibonacci/phi2DGeomTrig.html#hof2003           (accessed 

November 29, 2010). 

 

Constructing the Golden Rectangle 
[28]

 

 

Step 1: Begin with a square ABCD. Find the midpoint of  (see Step 2 of constructing a 

Golden Cut). Label the midpoint M. 

Step 2: Draw a circle with radius , centered at M. Extend the line segment  through B 

until it intersects the circle. We will call this point E. (B is not the Golden Cut).  Draw 

line perpendicular to . Extend  through C. The intersection of the perpendicular and this 

line will be F. The rectangle AEFD is a Golden Rectangle. (EFCB is also a Golden 

Rectangle). 

 

Figures 8 – 11: Steps to constructing a Golden Rectangle, from "nrich.maths.org :: 

Mathematics Enrichment :: December 2010 Front Page," http://nrich.maths.org (accessed 

November 5, 2010). 

Constructing the Golden Spiral 
[29]

 

 

Step 1: Begin with Golden Rectangle. Construct a square by drawing a circle whose 

radius is the height of the rectangle.  

Step 2: Repeat this process inside the smaller Golden Rectangles. 

Step 3: Inscribe quarter circles in each square to create the spiral. 

    

Figures 12-15: Steps to constructing a Golden Spiral, from Jill Britton, "Some More 

Geometry."  http://britton.disted.camosun.bc.ca/goldengeom/goldengeom2.html 

(accessed November 29, 2010). 

     The Golden Triangle is an isosceles triangle with base angles 72
◦
. When the length of 

the shorter leg of the triangle bisects one of the base angles, it intersects the opposite leg 



at a Golden Cut, thus forming a similar acute Golden Triangle.
 [30]

 The obtuse triangle 

that is formed is called the Golden Gnomon. 
[31]

 

 

Figure 16: The Golden Triangle, from "Constructions for the Golden Ratio," 

www.maths.surrey.ac.uk/hosted-

sites/R.Knott/Fibonacci/phi2DGeomTrig.html#hof2003           (accessed 

November 29, 2010). 

 

 

     The Pentagon and Pentagram also contain Golden relationships. The ratio of the side 

of a regular pentagon to its diagonal is φ. When the pentagram is inscribed within the 

pentagon, many of the ratios between segments are also φ. 
[32]

 If a pentagon is divided by 

diagonals from one vertex, the resulting triangles are Golden. The middle triangle is an 

acute Golden Triangle and the other two are obtuse Golden Triangles. 
[33]

 

Figure 17: The Pentagon and inscribed Pentagram, from R. Knott, D.A. Quinney, and 

PASS Maths, "The life and numbers of Fibonacci | plus.maths.org," 

http://plus.maths.org/issue3/fibonacci (accessed November 5, 2010). 

Architecture 

 

The Parthenon in Athens is the classic example of the Golden Ratio being used in 

architecture. It was constructed between 448 – 432 BC as a temple for the goddess 

Athena. The structure contains a multitude of Golden Rectangles. 
[34]

 The Greek sculptor, 

Phidias, created many pieces for display in the temple. These sculptures also employed 

the Golden Proportion in their design. 
[35] 

The ancient Greeks were very conscious of the 

aesthetic beauty of the Golden Ratio and used itin many of their architectural and artistic 

designs.  

 

Figure 18: The Parthenon, from Narain, D.L.                         "Mr. Narain's Golden 

Ratio WebSite." http://cuip.uchicago.edu/~dlnarain/golden/ (accessed October 4, 

2010). 

 

     The Great Pyramid of Khufu in Giza, Egypt is another example of an ancient structure 

where there seems to have been some knowledge and use of Golden Ratios in its design. 

It is one of the Seven Wonders of the Ancient World and it is easy to see why. 
[36] 

The 

Pyramid’s construction is a geometric wonder. Many of the proportions present adhere to 

the Golden Ratio and to Pi. The ratio of the slant height (height of the triangular face) to 



half of the base approximates φ. 
[37]

        

   

 

  

 

 

Figure 19: The Great Pyramid of Giza, from "Great Pyramid of Giza - Wikipedia, the free 

encyclopedia." http://en.wikipedia.org/wiki/Pyramid_of_Khufu (accessed October 4, 

2010). 

Figure 20: Showing proportions, from Samuel Obara, "Golden Ratio in Art and 

Architecture," 

http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio

/golden.html  (accessed October 4, 2010). 

 

      

     

     

 

     Many Medieval churches and cathedrals also include evidence of the use of Golden 

Ratios in their design. In the same way that the Parthenon’s facade may be divided by 

Golden Rectangles, Notre Dame
 [38]

 and the Chartres Cathedral in Paris may also be 

divided. The architects believed in a connection between geometrical design and artistic 

beauty when incorporating the Golden Ratio into their construction. 
[39]

   

         

Figure 21: Chartres Cathedral, from Samuel Obara, "Golden Ratio 

in Art and Architecture," 

http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat

6690/Golden%20Ratio/golden.html  (accessed October 4, 2010). 

 

     The Swiss architect, Le Corbusier, created the “modulor” (from the words “modul” 

meaning ratio, and “or” meaning gold) system for architectural design. 
[40]

 He 

consciously employed the Golden Ratio into his design. He was inspired by the work 

done by Vitruvius, Leonardo Da Vinci and others who found that the proportions of the 

human body added beauty and function to architecture. Le Corbusier’s Villa Stein in 

Garches, constructed in 1917 is probably the best example of the Modulor system. Le 

Corbusier believed that the Golden Ratio and the Fibonacci sequence are "rhythms 

apparent to the eye and clear in their relations with one another. And these rhythms are at 



the very root of human activities. They resound in Man by an organic inevitability, the 

same fine inevitability which causes the tracing out of the Golden Section by children, 

old men, savages, and the learned."
 [41] 

 

   

     In modern times, buildings such as the United Nations Headquarters in New York 

City and the CN Tower in Toronto have Golden Ratios in their design. The United 

Nations building is three Golden Rectangles on top of one another. The observation deck 

of the CN Tower is at the Golden Cut of the height of the Tower, making the ratio of its 

total height to the height above the observation deck φ. 
[42]     

       
     

    Figure 22: CN Tower, from      “Phi: 1.618.” 

http://goldennumber.net/    (accessed October 4, 2010).        

Figure 23: United Nations Headquarters,       from 

“Phi: 1.618.” http://goldennumber.net/        

              (accessed  October 4, 2010).               

    

Art  

       

The Golden Ratio is present in many portraits. It is not known if this were purposely done 

as part of the design, or because of the inherent presence of the ratio in the human form. 

For some it seems that the use of the Divine Proportion was a conscious decision. 

Leonardo Da Vinci was a prolific artist who employed the Golden Ratio in his sketches, 

paintings and sculptures. The Mona Lisa, the famous portrait of a woman with a coy 

smile, is embedded with Golden Rectangles. An Old Man, a sketch, has many rectangles 

sketched on it, many of which approximate Golden Rectangles. 
[43] 

The Last Supper, 

Madonna with Child and Saints, St. Jerome, and The Annunciation are all works which 

use the Divine Proportion in their composition. 
[44] 

The Vitruvian Man is perhaps one of 

Da Vinci’s most well-known drawings. It is his attempt to show the perfection of the 

human body in all of its Divine Proportions. 
[45]

 
 

 

 

Figure 24: An Old Man, from Samuel Obara, "Golden Ratio in Art and Architecture," 

http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio

/golden.html (accessed October 4, 2010).        

                      

Figure 25: Mona Lisa, from “Leonardo da Vinci - Wikipedia, the free encyclopedia."          

http://en.wikipedia.org/wiki/Leonardo_da_Vinci (accessed November 7, 2010). 



 

 

 

   

 

 

Figure 26: The Annunciation, from “Leonardo da Vinci - Wikipedia, the free 

encyclopedia." http://en.wikipedia.org/wiki/Leonardo_da_Vinci        (accessed November 

7, 2010).    

The Golden Ratio may also be observed in the works of Botticelli, Michelangelo, 

Raphael, Salvador Dali, Maurice Seurat, and Piet Mondrian. Golden Triangles and 

Golden Stars (pentagrams) are used in the composition of several famous paintings 

including The Holy Family, by Michelangelo and The Crucifixion by Raphael. Salvador 

Dali uses the Golden Rectangle as the frame for The Sacrament of the Last Supper. He 

also uses a dodecahedronin his composition. The dodecahedron is made up of twelve 

pentagons and is closely linked to the Golden Ratio. In Bathers, Maurice Seurat, uses 

Golden Rectangles to divide the focus of his painting. Piet Mondrian, a Dutch painter, 

created many works involving horizontal and vertical lines which often formed Golden 

Rectangles. 
[46]

 

                   

Figure 27: The Crucifixion (Golden Triangle and Star highlighted), from Samuel Obara, 

"Golden Ratio in Art and Architecture," 

http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio

/golden.html (accessed October 4, 2010).       

Figure 28: The Sacrament of the Last Supper , from Samuel Obara, "Golden Ratio in Art 

and Architecture," 

http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio

/golden.html (accessed October 4, 2010).    

       

 

Unit 

 

Lesson One 

 

I will begin the unit by displaying six rectangles. Each rectangle will be different, some 

will be squarer, some skinny, and one will be in the Golden Proportion.Students will 

create a survey/poll for the most “beautiful” rectangle. Encourage students to include 



thought-provoking questions such as “Why did you choose that particular rectangle?” and 

“Do you think a rectangle be beautiful?” in their survey. In pairs, students can be sent to 

poll other classes. Once the data has been collected, the class will create a bar graph to 

display the data obtained from the poll. Ask questions about the results of the data such 

as “Are you surprised by the results?” and “Do you think that the sample size was large 

enough?” Have students qualify their answers. Discuss the answers to the survey 

questions. Talk about whether or not the class believes that the survey questions were 

appropriate. Should the questions be modified if we were to redo the survey with a 

different group? 

     The students will take measurements of each of the rectangles and find the ratio of the 

length to the width of each. Next we will find objects around the classroom that are 

rectangular. (For example, textbooks, notebooks, TV screen, index cards, desktops, the 

door). In pairs students will measure using rulers or tape measure the length and width of 

items. They will then create ratios comparing the longer side to the shorter side. How 

many of these measurements are close to the students’ choice of the most beautiful 

rectangle? 
[47]

 

 

     Explain that since ancient times (5
th

 Century B.C.) the proportion of 1:1.618… has 

been considered one of beauty. Euclid was the first to write about this proportion. He said 

that any line may be cut in such a way that the ratio of the line to its longest part is 

proportional to the ratio of the longer part to the shorter part. The ratio goes by many 

names: the Golden Mean, the Golden Section, the Golden Ratio, and the Divine 

Proportion. [For Algebra extension, see *] This ratio turned out to be an irrational number 

1.618… It has since been denoted as the Greek letter “phi,” φ. 

 

     *Algebra Extension: At this point, demonstrate how to make the Golden Cut (see 

Constructions). Label the whole x, and the longer segment 1. Have the students come up 

with an expression for the shorter segment. Using proportions and quadratic formula (see 

Mathematically Speaking), lead students to discover the value of x (i.e. 1.618… = φ). 

You may wish to show a video clips about how φ is calculated. See “HowStuffWorks 

Videos "Assignment Discovery: Golden Ratio" 
[48] 

and "HowStuffWorks Videos 

"Assignment Discovery: The Golden Ratio.” 
[49]

 

 

     Many throughout history have marveled at the places that this ratio appears in nature. 

They have also attributed to it beauty. It is a ratio used by the ancient Greeks in their 

construction of the Parthenon. It was used by the Egyptians in the building of the great 

pyramids in Giza. There is even evidence that the Mayans used it in their calendar. 
[50] 

It 



has also been used in paintings and sculptures. Even today, we find the Golden Ratio 

being used by marketers in design. 

 

     Give the students an assignment to find six rectangular objects around their house. 

Take measurements and create ratios of longer side to shorter side. Which objects 

approximate φ? Have students explain why they think that these objects are made in the 

Golden Ratio. Do you think that it was done on purpose? What might the purpose be for 

designing objects in the Golden Proportion? 

 

Lesson 2 

 

Demonstrate how to construct a Golden Cut, a Golden Rectangle, and a Golden Spiral 

(see Constructions). Have students use a straight edge and a compass for their 

constructions. No measurements will be taken.  

 

     Give students pictures of the Parthenon. Have students draw the length of the base of 

the Parthenon on a transparency overlaid on the Parthenon. From there students should 

construct a Golden Rectangle. Students should “spiral” Golden Rectangles. Once students 

have a variety of sizes they should use their Golden Rectangles to see if the Parthenon is 

approximately a Golden Rectangle, and how many other Golden Rectangles they can find 

within its façade. 

 

     For an assignment, offer students other pictures of buildings such as Notre Dame, the 

Chartres Cathedral, the United Nations Headquarters, and the CN Tower. Students should 

create Golden Rectangles to fit a base length on the picture, like they did with the 

Parthenon. Do these buildings include Golden Rectangles in their design? How so?  

 

Lesson Three 

 

For this lesson, students should be in groups of three or four. Students will be exposed to 

a variety of artwork and photography that incorporate the Golden Ratio. Students should 

discuss what the appeal of each piece is. Is it beautiful? What makes it beautiful? Do you 

think that the way that it has beenlaid out or composed plays a part in how you perceive it 

as being attractive? Take up the pictures and replace them with the same pictures that 

have been cropped differently. 
[51] 

How does this affect how you feel about the 

artwork/photograph? Do you think that the artist/photographer created their composition 

purposefully?  



 

     Have students explore the compositions of the original pictures.Is there evidence of 

Golden rectangles in the composition of each? 
[52] [53] 

Do you think that the 

artist/photographer was aware of this Golden Ratio when they composed their 

artwork/photograph? Or was the presence of the Golden Ratio just by chance? 

 

     For an assignment, have students take a photograph that demonstrates a conscious 

effort to incorporate the Golden Ratio. Each student should have the opportunity to 

present his/her photograph to the class. The student should elaborate about how the 

Golden Ratio was used. Other students should be allowed to make comments about the 

use of the Golden Ratio. Suggestions for how the photograph could be improved may be 

offered. Students may choose to retake their photo. Students work can be displayed. 

 

Lesson Four 

 

Conduct a Socratic Seminar on beauty and how we perceive people to be beautiful. What 

makes people beautiful? How do we determine who is beautiful? Does the media 

(magazines and/or television) influence our perception of beauty? Does personality play a 

part in whether or not we believe someone to be beautiful? Does knowing a person 

change your perspective on their beauty? 

Figure 29: Vitruvian Man, from M. Bourne, "The Math 

Behind the Beauty," 

http://www.intmath.com/Numbers/mathOfBeauty.php 

(accessed October 4, 2010).   

     People throughout history have grappled with similar questions. What makes people 

beautiful? Not surprisingly, the ancient Greeks and even the Renaissance painters 

believed that beauty was linked to the Golden Ratio. Men like Phidias (for whom phi is 

named) believed that by using the Golden Ratio in their sculptures they were approaching 

the “perfect” form. Leonardo DaVinci emphasized the proportion of the human body in 

his Vitruvian Man. Give pairs of students a picture of the Vitruvian Man and have them 

discover through measurement some of the Golden Proportions present.   

       

     The Golden Ratio when found in the proportions of the body is supposed to indicate 

perfection. This is also true of the proportions of the face. Show the video “The golden 

ratio in the human face". 
[54] 

Investigate this further online at "The Math Behind the 

Beauty." 
[55] 

Many believe that faces that have proportions that approximate φ are 



beautiful. What do you think, based on our previous discussion? Can math make you 

beautiful? Or is beauty more than just Divine Proportions?  

 

     For an assignment, have students write an opinion paper about beauty. “Is beauty in 

the eye of the beholder?” They should include information gleaned from class discussion.  

 

 

Lesson Five 

 

Write down the first five terms in the Fibonacci sequence. Have the students find the next 

five terms in the sequence. Students should be able to justify/explain how they figured 

out what came next.  

 

     Fibonacci Numbers are quite prevalent in nature. Explain where in nature they are 

found (pinecones, petals on flowers, sunflower heads, etc.). Show the video “Nature by 

Numbers.”
 [56]

 

 

     The Fibonacci Numbers have a special link to the Golden Ratio. Have students find 

the ratio of a Fibonacci number and the Fibonacci number that came before it for the first 

12 terms. The students should notice a pattern. What number is this approaching?  

 

     *Algebra Extension: Have the students create a scatter plot of ratios.
 [57]

 List 1 should 

be the first twelve numbers in the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 

144}. List 2 should be the first thirteen numbers without the initial 1: {1, 2, 3, 5, 8, 13, 

21, 34, 55, 89, 144, and 233}. List 3 = List 2/List 1. Students should notice the ratios are 

close to φ. For the scatter plot, let x = List 2 and y = List 3. Have students estimate a line 

of best fit before having them calculate it on the graphing calculator. Students should be 

able to predict what might happen if we added more data to our lists. 

 

Culminating Art Project 

 

Students will choose one of the following art projects to complete the unit: 

 • Create a Golden Spiral. The Spiral should fill as much of the paper 

as possible. The Spiral should be colored by square. The inside of the spiral 

should be a contrasting (opposite) color from the outside of the spiral. 



 • Create a Fibonacci Spiral. The Spiral should fill as much of a piece 

of paper as possible. The Spiral should be colored in tints and shades (darkest at 

the center).  

 

 Figure 30: Example of Fibonacci Spiral, from "Photography Lesson: Golden ratio | 

mean," http://www.photographyicon.com/goldenratio/index.html (accessed October 4, 

2010). 

 

 

 • Create a piece of art like Piet Mondrian which incorporates Golden 

Rectangles and uses only black, white, red, blue, and yellow. 

Figure 31: Composition in Red, Yellow,  and Blue, from 

Samuel Obara, "Golden  Ratio in Art and Architecture," 

 http://jwilson.coe.uga.edu/EMT668/EMAT

 6680.2000/Obara/Emat6690/Golden%20Ra

 tio/golden.html (accessed October 4, 2010).                                      

    

 • Create a “tree” whose branches and leaves represent the Fibonacci 

sequence (up to the 7
th

 or 8
th

 term).Each number in the sequence should be 

represented by a different color.  

 

 • Create a portfolio of personal photographs (8 – 12 photos) that 

incorporates the use of the Golden Triangle, Spiral, or Rectangle. 

 

 • Students will be allowed to create a project of their own. It must be 

approved by the teacher. The project must incorporate the Golden Ratio or 

Fibonacci Numbers in some way and must be an original work. 
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